Deep morphological simplification network (MS-Net) for guided registration of brain magnetic resonance images

计算机科学 人工智能 计算机视觉 图像配准 深度学习 图像(数学) 网(多面体) 模式识别(心理学) 数学 几何学
作者
Dongming Wei,Lichi Zhang,Zhengwang Wu,Xiaohuan Cao,Gang Li,Dinggang Shen,Qian Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:100: 107171-107171 被引量:8
标识
DOI:10.1016/j.patcog.2019.107171
摘要

Deformable brain MR image registration is challenging due to large inter-subject anatomical variation. For example, the highly complex cortical folding pattern makes it hard to accurately align corresponding cortical structures of individual images. In this paper, we propose a novel deep learning way to simplify the difficult registration problem of brain MR images. Specifically, we train a morphological simplification network (MS-Net), which can generate a simple image with less anatomical details based on the complex input. With MS-Net, the complexity of the fixed image or the moving image under registration can be reduced gradually, thus building an individual (simplification) trajectory represented by MS-Net outputs. Since the generated images at the ends of the two trajectories (of the fixed and moving images) are so simple and very similar in appearance, they are easy to register. Thus, the two trajectories can act as a bridge to link the fixed and the moving images, and guide their registration. Our experiments show that the proposed method can achieve highly accurate registration performance on different datasets (i.e., NIREP, LPBA, IBSR, CUMC, and MGH). Moreover, the method can be also easily transferred across diverse image datasets and obtain superior accuracy on surface alignment. We propose MS-Net as a powerful and flexible tool to simplify brain MR images and their registration. To our knowledge, this is the first work to simplify brain MR image registration by deep learning, instead of estimating deformation field directly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助srf0602.采纳,获得10
2秒前
2秒前
2秒前
4秒前
王ccccc完成签到,获得积分10
4秒前
Qiuyajing完成签到,获得积分10
5秒前
无奈傲菡完成签到,获得积分10
5秒前
Hello应助sansronds采纳,获得10
5秒前
7秒前
卓诗云发布了新的文献求助10
7秒前
zg发布了新的文献求助10
7秒前
7秒前
8秒前
shelemi发布了新的文献求助10
8秒前
Akim应助澈炽采纳,获得10
8秒前
英俊的铭应助朝暮行行采纳,获得10
9秒前
哈哈发布了新的文献求助10
9秒前
ZhouJingyi完成签到,获得积分10
10秒前
啊哈哈完成签到,获得积分10
12秒前
12秒前
srf0602.发布了新的文献求助10
12秒前
showitt完成签到,获得积分10
13秒前
14秒前
Wangnono发布了新的文献求助10
15秒前
zg完成签到,获得积分10
15秒前
大模型应助熊小熊XIONG采纳,获得10
16秒前
Pocketter关注了科研通微信公众号
17秒前
MMZ关注了科研通微信公众号
18秒前
zoe完成签到 ,获得积分10
18秒前
kun完成签到,获得积分10
19秒前
19秒前
19秒前
sansronds发布了新的文献求助10
20秒前
溫蒂发布了新的文献求助10
21秒前
小二郎应助九耳久知采纳,获得10
21秒前
rr发布了新的文献求助10
23秒前
23秒前
23秒前
香蕉觅云应助陈泽冉采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243918
求助须知:如何正确求助?哪些是违规求助? 2887807
关于积分的说明 8249895
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384557
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625867