Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting

分解水 催化作用 电催化剂 电化学 析氧 阳极 电子转移 材料科学 纳米技术 化学 电极 光化学 有机化学 生物化学 物理化学 光催化
作者
Wenjie Jiang,Tang Tang,Yun Zhang,Jin‐Song Hu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (6): 1111-1123 被引量:391
标识
DOI:10.1021/acs.accounts.0c00127
摘要

ConspectusHydrogen is an ideal energy carrier and plays a critical role in the future energy transition. Distinct from steam reforming, electrochemical water splitting, especially powered by renewables, has been considered as a promising technique for scalable production of high-purity hydrogen with no carbon emission. Its commercialization relies on the reduction of electricity consumption and thus hydrogen cost, calling for highly efficient and cost-effective electrocatalysts with the capability of steadily working at high hydrogen output. This requires the electrocatalysts to feature (1) highly active intrinsic sites, (2) abundant accessible active sites, (3) effective electron and mass transfer, (4) high chemical and structural durability, and (5) low-cost and scalable synthesis. It should be noted that all these requirements should be fulfilled together for a practicable electrocatalyst. Much effort has been devoted to addressing one or a few aspects, especially improving the electrocatalytic activity by electronic modulation of active sites, while few reviews have focused on the synergistic modulation of these aspects together although it is essential for advanced electrochemical water splitting.In this Account, we will present recent innovative strategies with an emphasis on our solutions for synergistically modulating intrinsic active sites, electron transportation, mass transfer, and gas evolution, as well as mechanical and chemical durability, of non-precious-metal electrocatalysts, aiming for cost-effective and highly efficient water splitting. The following approaches for coupling these aspects are summarized for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). (1) Synergistic electronic modulations. The electronic structure of a catalytic site determines the adsorption/desorption of reactive intermediates and thus intrinsic activity. It can be tuned by heterogeneous doping, strain effect, spin polarization, etc. Coupling these effects to optimize the reaction pathways or target simultaneously the activity and stability would advance electrocatalytic performance. (2) Synergistic electronic and crystalline modulation. The crystallinity, crystalline phase, crystalline facets, crystalline defects, etc. affect both activity and stability. Coupling these effects with electronic modulation would enhance the activity together with stability. (3) Synergistic electronic and morphological modulation. It will focus on concurrently modulating electronic structure for improving the intrinsic activity and morphology for increasing accessible active sites, especially through single action or processing. The mass transfer and gas evolution properties can also be enhanced by morphological modulation to enable water splitting at large output. (4) Synergistic modulation of elementary reactions. Electrocatalytic reaction generally consists of a couple of elementary reactions. Each one may need a specific active site. Designing and combining various components targeting every elementary step on a space-limited catalyst surface will balance the intermediates and these steps for accelerating the overall reaction. (5) Integrated electrocatalyst design. Taking all these strategies together into account is necessary to integrate all above essential features into one electrocatalyst for enabling high-output water electrolysis. Beyond the progress made to date, the remaining challenges and opportunities is also discussed. With these insights, hopefully, this Account will shed light on the rational design of practical water-splitting electrocatalysts for the cost-effective and scalable production of hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Channing发布了新的文献求助10
刚刚
qwe123完成签到,获得积分10
刚刚
刚刚
1秒前
我是老大应助DAYTOY采纳,获得10
1秒前
1秒前
HR112应助清欢采纳,获得10
2秒前
2秒前
小李完成签到,获得积分10
3秒前
任性冰凡发布了新的文献求助10
3秒前
yue发布了新的文献求助10
3秒前
粒子耶完成签到,获得积分10
3秒前
QL完成签到,获得积分10
4秒前
面包小狗完成签到,获得积分10
4秒前
星期日发布了新的文献求助10
4秒前
4秒前
熙熙发布了新的文献求助10
5秒前
姜鲅发布了新的文献求助10
5秒前
5秒前
醒醒发布了新的文献求助10
5秒前
Yuusuki完成签到,获得积分10
5秒前
5秒前
6秒前
哭泣愚志完成签到 ,获得积分10
6秒前
6秒前
李小新完成签到 ,获得积分10
7秒前
7秒前
7秒前
传奇3应助Amy采纳,获得10
7秒前
我爱学习完成签到,获得积分20
7秒前
8秒前
大方的大地完成签到,获得积分10
8秒前
8秒前
982289172发布了新的文献求助10
9秒前
ssong发布了新的文献求助10
9秒前
无花果应助珺晔采纳,获得10
9秒前
11秒前
sixgodness发布了新的文献求助10
11秒前
nike完成签到,获得积分10
11秒前
Dxm完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316970
求助须知:如何正确求助?哪些是违规求助? 4459426
关于积分的说明 13875166
捐赠科研通 4349392
什么是DOI,文献DOI怎么找? 2388806
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352288