亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting

分解水 催化作用 电催化剂 电化学 析氧 阳极 电子转移 材料科学 纳米技术 化学 电极 光化学 有机化学 生物化学 物理化学 光催化
作者
Wenjie Jiang,Tang Tang,Yun Zhang,Jin‐Song Hu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (6): 1111-1123 被引量:372
标识
DOI:10.1021/acs.accounts.0c00127
摘要

ConspectusHydrogen is an ideal energy carrier and plays a critical role in the future energy transition. Distinct from steam reforming, electrochemical water splitting, especially powered by renewables, has been considered as a promising technique for scalable production of high-purity hydrogen with no carbon emission. Its commercialization relies on the reduction of electricity consumption and thus hydrogen cost, calling for highly efficient and cost-effective electrocatalysts with the capability of steadily working at high hydrogen output. This requires the electrocatalysts to feature (1) highly active intrinsic sites, (2) abundant accessible active sites, (3) effective electron and mass transfer, (4) high chemical and structural durability, and (5) low-cost and scalable synthesis. It should be noted that all these requirements should be fulfilled together for a practicable electrocatalyst. Much effort has been devoted to addressing one or a few aspects, especially improving the electrocatalytic activity by electronic modulation of active sites, while few reviews have focused on the synergistic modulation of these aspects together although it is essential for advanced electrochemical water splitting.In this Account, we will present recent innovative strategies with an emphasis on our solutions for synergistically modulating intrinsic active sites, electron transportation, mass transfer, and gas evolution, as well as mechanical and chemical durability, of non-precious-metal electrocatalysts, aiming for cost-effective and highly efficient water splitting. The following approaches for coupling these aspects are summarized for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). (1) Synergistic electronic modulations. The electronic structure of a catalytic site determines the adsorption/desorption of reactive intermediates and thus intrinsic activity. It can be tuned by heterogeneous doping, strain effect, spin polarization, etc. Coupling these effects to optimize the reaction pathways or target simultaneously the activity and stability would advance electrocatalytic performance. (2) Synergistic electronic and crystalline modulation. The crystallinity, crystalline phase, crystalline facets, crystalline defects, etc. affect both activity and stability. Coupling these effects with electronic modulation would enhance the activity together with stability. (3) Synergistic electronic and morphological modulation. It will focus on concurrently modulating electronic structure for improving the intrinsic activity and morphology for increasing accessible active sites, especially through single action or processing. The mass transfer and gas evolution properties can also be enhanced by morphological modulation to enable water splitting at large output. (4) Synergistic modulation of elementary reactions. Electrocatalytic reaction generally consists of a couple of elementary reactions. Each one may need a specific active site. Designing and combining various components targeting every elementary step on a space-limited catalyst surface will balance the intermediates and these steps for accelerating the overall reaction. (5) Integrated electrocatalyst design. Taking all these strategies together into account is necessary to integrate all above essential features into one electrocatalyst for enabling high-output water electrolysis. Beyond the progress made to date, the remaining challenges and opportunities is also discussed. With these insights, hopefully, this Account will shed light on the rational design of practical water-splitting electrocatalysts for the cost-effective and scalable production of hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向连虎完成签到,获得积分20
3秒前
向连虎发布了新的文献求助10
7秒前
mmyhn发布了新的文献求助30
11秒前
12秒前
酷波er应助向连虎采纳,获得10
14秒前
池林发布了新的文献求助10
18秒前
lsx完成签到,获得积分10
20秒前
上官若男应助科研通管家采纳,获得10
31秒前
bkagyin应助不羁之魂采纳,获得10
37秒前
研友_VZG7GZ应助池林采纳,获得30
40秒前
喔喔佳佳L完成签到 ,获得积分10
58秒前
h0jian09完成签到,获得积分10
1分钟前
1分钟前
池林发布了新的文献求助30
1分钟前
YIN发布了新的文献求助10
1分钟前
1分钟前
Mr_X完成签到,获得积分20
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
吐丝麵包完成签到 ,获得积分10
1分钟前
1分钟前
池林完成签到,获得积分10
1分钟前
不羁之魂发布了新的文献求助10
1分钟前
kd1412完成签到 ,获得积分10
2分钟前
Jasper应助池林采纳,获得10
2分钟前
2分钟前
池林发布了新的文献求助10
2分钟前
supermario应助科研通管家采纳,获得30
2分钟前
2分钟前
一剑白完成签到 ,获得积分10
2分钟前
Orange应助池林采纳,获得10
2分钟前
领导范儿应助粗心的梦竹采纳,获得10
3分钟前
大模型应助远方采纳,获得10
4分钟前
fransiccarey完成签到,获得积分10
4分钟前
上官若男应助科研通管家采纳,获得10
4分钟前
李健应助科研通管家采纳,获得20
4分钟前
杳鸢应助fqx379采纳,获得200
4分钟前
4分钟前
远方发布了新的文献求助10
4分钟前
远方完成签到,获得积分10
5分钟前
小鱼儿完成签到,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294496
求助须知:如何正确求助?哪些是违规求助? 2930434
关于积分的说明 8445992
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420680
科研通“疑难数据库(出版商)”最低求助积分说明 660644
邀请新用户注册赠送积分活动 643433