[Differential analysis of gene expression profiles in hepatocellular carcinoma patients with high and low levels of alpha-fetoprotein].

肝细胞癌 基因 基因表达 生物 转录组 基因表达谱 错误发现率 甲胎蛋白 小桶 生物信息学 计算生物学 分子生物学 遗传学
作者
X J Wang,Rongfang Shen,Xin Wang,Y R Wang,Ting Xiao
出处
期刊:PubMed 卷期号:42 (5): 396-402
标识
DOI:10.3760/cma.j.cn112152-112152-20191115-00740
摘要

Objective: To investigate the differential gene expression profiles of alpha-fetoprotein (AFP) high- and low-expressing hepatocellular carcinoma (HCC), and to provide a theoretical basis for the molecular mechanism and prognosis analysis of HCC. Methods: The transcriptome data and related clinical information from 368 HCC cases were obtained from the Cancer Gene Atlas (TCGA) public database. The samples were divided into AFP high expression (AFP(high)) group and low expression (AFP(low)) group according to the quartile of AFP mRNA expression, with 92 cases in each group. The differential gene analysis was carried out using the DEseq2 package in the R software. The functional and KEGG pathway enrichment analysis of the differential genes was performed using ClusterProfiler package. The protein-protein interaction network was constructed to screen hub genes using the String database and Cytoscape software. The single-sample GSEA analysis was performed to enrich and score signature gene sets using the GSVA package. And then RNAseq data and real-time quantitative polymerase chain reaction (RT-qPCR) were used for independent dataset validation and tissue validation. Results: The clinical analysis showed that high expression of AFP was significantly associated with poor pathological differentiation and ethnicity (P<0.05 for both). A total of 1 382 differential genes were obtained by bioinformatics analysis, of which 931 genes were up-regulated and 451 genes were down-regulated in AFP(high) group. GO enrichment analysis showed that the highly expressed genes were mainly correlated with the processes of appendage development, limb development, and skeletal system development, while lowly expressed genes were related to metabolic-related processes such as xenobiotic metabolism, steroid metabolism, and cellular response to xenobiotic stimuli. KEGG pathway enrichment analysis revealed that highly expressed genes were mainly involved in primary immunodeficiency, neuroactive ligand-receptor interaction, and cytokine-cytokine receptor interaction, while lowly expressed genes were mainly involved in retinol metabolism, chemical carcinogenesis, steroid hormone biosynthesis and other pathways. A prognostic related gene set that was consisted of AURKB, TTK, CENPA, UBE2C, HJURP, and KIF15 was identified. And the high expression of this gene set was related to the shorter recurrence-free survival and overall survival time in HCC patients, and its enrichment score was positively correlated with AFP expression (r=0.475, P<0.001). The validation results of RNAseq data were basically consistent with the TCGA data. The RT-qPCR results showed that AURKB, KIF15, and UBE2C were significantly overexpressed in HCC tissues with high AFP expression. Although the expression of AURKB, TTK, KIF15, and UBE2C was not related to recurrence-free survival and overall survival of HCC patients, there was a tendency that the patients with high AFP levels showed relatively shorter recurrence-free survival time and overall survival time. Conclusions: There is a large difference in gene expression profiles between AFP(high) and AFP(low) HCC. The prognostic signature may cooperate with AFP to promote the initiation and development of HCC. It also may explain the tumorigenesis in HCC with different AFP levels, and provide new clues for the prognosis of HCC.目的: 探讨甲胎蛋白(AFP)高表达和低表达肝细胞肝癌(HCC)中的差异表达基因表达谱,为HCC的分子机制研究及预后判断提供理论依据。 方法: 从肿瘤基因图谱计划(TCGA)公共数据库获得368例包含完整临床信息的HCC转录组数据,根据组织AFP mRNA表达四分位数将样本分为AFP高表达组和AFP低表达组,每组各92例。应用R软件中的DEseq2包进行差异表达基因分析,应用ClusterProfiler包对差异表达基因进行基因本体论(GO)功能分析和京都基因与基因组百科全书(KEGG)通路分析,应用String数据库和Cytoscape软件构建蛋白相互作用网络,筛选关键基因。采用单样本基因集富集分析方法,通过R软件GSVA包对特征基因进行富集评分,根据得分定义特征基因集表达情况。利用RNAseq数据和实时荧光定量聚合酶链反应(RT-qPCR)进行独立数据集验证和组织验证。 结果: TCGA数据分析显示,AFP高表达与HCC低分化、患者人种有关(均P<0.05)。生物信息学分析共获得1 382个差异表达基因,其中931个基因在AFP高表达组织中表达上调,451个基因表达下调。GO功能分析显示,AFP高表达组织中高表达的基因主要与附属肢体发育、肢体发育、骨架系统发育等过程有关,而低表达基因则与异源物代谢、类固醇代谢、细胞对异生物刺激反应等代谢相关过程有关。KEGG通路分析显示,AFP高表达组织中高表达的基因主要参与原发性免疫缺陷、神经活性配体-受体相互作用、细胞因子-细胞因子受体相互作用通路,而低表达基因主要与视黄醇代谢、化学致癌作用、类固醇激素的生物合成等通路相关。鉴定出1个预后相关特征基因集,该基因集包括AURKB、TTK、CENPA、UBE2C、HJURP、KIF15,其高表达与HCC患者的无复发生存和总生存有关,且特征基因集富集分数与AFP表达呈正相关(r=0.475,P<0.001)。RNAseq数据验证结果与TCGA数据分析结果基本一致。RT-qPCR检测结果显示,特征基因集中AURKB、KIF15和UBE2C在AFP高表达HCC组织中显著高表达,其表达虽然与HCC患者的无病生存、总生存无关,但AFP低表达组患者的无病生存曲线和总生存曲线均在AFP高表达组患者之上。 结论: AFP高表达和AFP低表达HCC在基因表达谱上存在较大差异。筛选出的特征基因集可能协同AFP共同促进HCC的发生发展,其对解释不同水平AFP HCC的作用机制有一定作用,并为HCC的预后判断提供了新的思路和依据。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
愉快草莓发布了新的文献求助10
1秒前
2秒前
2秒前
科研小张完成签到,获得积分10
2秒前
今后应助安静的瑾瑜采纳,获得10
4秒前
LJP完成签到,获得积分10
4秒前
4秒前
猫丫完成签到,获得积分10
5秒前
dreammaker发布了新的文献求助30
5秒前
愉快草莓完成签到,获得积分10
5秒前
背后老六发布了新的文献求助10
7秒前
清茗发布了新的文献求助10
8秒前
周周完成签到,获得积分10
8秒前
CC关注了科研通微信公众号
8秒前
小小富完成签到,获得积分10
9秒前
10秒前
mo0应助他方世界采纳,获得20
11秒前
11秒前
ONESTUD应助雨轩采纳,获得100
12秒前
科研通AI2S应助zoie0809采纳,获得10
13秒前
清茗完成签到,获得积分10
14秒前
无花果应助ZXQ111采纳,获得10
14秒前
Nature发布了新的文献求助10
15秒前
15秒前
CodeCraft应助Felix采纳,获得10
17秒前
打打应助lsy采纳,获得30
18秒前
18秒前
dreammaker完成签到,获得积分10
19秒前
lilyccc完成签到,获得积分10
19秒前
blueming完成签到,获得积分10
19秒前
酷炫的之柔完成签到,获得积分10
21秒前
CC发布了新的文献求助10
22秒前
22秒前
23秒前
不配.应助Nature采纳,获得10
23秒前
Akuna发布了新的文献求助10
24秒前
25秒前
likai发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478