[Differential analysis of gene expression profiles in hepatocellular carcinoma patients with high and low levels of alpha-fetoprotein].

肝细胞癌 基因 基因表达 生物 转录组 基因表达谱 错误发现率 甲胎蛋白 小桶 生物信息学 计算生物学 分子生物学 遗传学
作者
X J Wang,Rongfang Shen,Xin Wang,Y R Wang,Ting Xiao
出处
期刊:PubMed 卷期号:42 (5): 396-402
标识
DOI:10.3760/cma.j.cn112152-112152-20191115-00740
摘要

Objective: To investigate the differential gene expression profiles of alpha-fetoprotein (AFP) high- and low-expressing hepatocellular carcinoma (HCC), and to provide a theoretical basis for the molecular mechanism and prognosis analysis of HCC. Methods: The transcriptome data and related clinical information from 368 HCC cases were obtained from the Cancer Gene Atlas (TCGA) public database. The samples were divided into AFP high expression (AFP(high)) group and low expression (AFP(low)) group according to the quartile of AFP mRNA expression, with 92 cases in each group. The differential gene analysis was carried out using the DEseq2 package in the R software. The functional and KEGG pathway enrichment analysis of the differential genes was performed using ClusterProfiler package. The protein-protein interaction network was constructed to screen hub genes using the String database and Cytoscape software. The single-sample GSEA analysis was performed to enrich and score signature gene sets using the GSVA package. And then RNAseq data and real-time quantitative polymerase chain reaction (RT-qPCR) were used for independent dataset validation and tissue validation. Results: The clinical analysis showed that high expression of AFP was significantly associated with poor pathological differentiation and ethnicity (P<0.05 for both). A total of 1 382 differential genes were obtained by bioinformatics analysis, of which 931 genes were up-regulated and 451 genes were down-regulated in AFP(high) group. GO enrichment analysis showed that the highly expressed genes were mainly correlated with the processes of appendage development, limb development, and skeletal system development, while lowly expressed genes were related to metabolic-related processes such as xenobiotic metabolism, steroid metabolism, and cellular response to xenobiotic stimuli. KEGG pathway enrichment analysis revealed that highly expressed genes were mainly involved in primary immunodeficiency, neuroactive ligand-receptor interaction, and cytokine-cytokine receptor interaction, while lowly expressed genes were mainly involved in retinol metabolism, chemical carcinogenesis, steroid hormone biosynthesis and other pathways. A prognostic related gene set that was consisted of AURKB, TTK, CENPA, UBE2C, HJURP, and KIF15 was identified. And the high expression of this gene set was related to the shorter recurrence-free survival and overall survival time in HCC patients, and its enrichment score was positively correlated with AFP expression (r=0.475, P<0.001). The validation results of RNAseq data were basically consistent with the TCGA data. The RT-qPCR results showed that AURKB, KIF15, and UBE2C were significantly overexpressed in HCC tissues with high AFP expression. Although the expression of AURKB, TTK, KIF15, and UBE2C was not related to recurrence-free survival and overall survival of HCC patients, there was a tendency that the patients with high AFP levels showed relatively shorter recurrence-free survival time and overall survival time. Conclusions: There is a large difference in gene expression profiles between AFP(high) and AFP(low) HCC. The prognostic signature may cooperate with AFP to promote the initiation and development of HCC. It also may explain the tumorigenesis in HCC with different AFP levels, and provide new clues for the prognosis of HCC.目的: 探讨甲胎蛋白(AFP)高表达和低表达肝细胞肝癌(HCC)中的差异表达基因表达谱,为HCC的分子机制研究及预后判断提供理论依据。 方法: 从肿瘤基因图谱计划(TCGA)公共数据库获得368例包含完整临床信息的HCC转录组数据,根据组织AFP mRNA表达四分位数将样本分为AFP高表达组和AFP低表达组,每组各92例。应用R软件中的DEseq2包进行差异表达基因分析,应用ClusterProfiler包对差异表达基因进行基因本体论(GO)功能分析和京都基因与基因组百科全书(KEGG)通路分析,应用String数据库和Cytoscape软件构建蛋白相互作用网络,筛选关键基因。采用单样本基因集富集分析方法,通过R软件GSVA包对特征基因进行富集评分,根据得分定义特征基因集表达情况。利用RNAseq数据和实时荧光定量聚合酶链反应(RT-qPCR)进行独立数据集验证和组织验证。 结果: TCGA数据分析显示,AFP高表达与HCC低分化、患者人种有关(均P<0.05)。生物信息学分析共获得1 382个差异表达基因,其中931个基因在AFP高表达组织中表达上调,451个基因表达下调。GO功能分析显示,AFP高表达组织中高表达的基因主要与附属肢体发育、肢体发育、骨架系统发育等过程有关,而低表达基因则与异源物代谢、类固醇代谢、细胞对异生物刺激反应等代谢相关过程有关。KEGG通路分析显示,AFP高表达组织中高表达的基因主要参与原发性免疫缺陷、神经活性配体-受体相互作用、细胞因子-细胞因子受体相互作用通路,而低表达基因主要与视黄醇代谢、化学致癌作用、类固醇激素的生物合成等通路相关。鉴定出1个预后相关特征基因集,该基因集包括AURKB、TTK、CENPA、UBE2C、HJURP、KIF15,其高表达与HCC患者的无复发生存和总生存有关,且特征基因集富集分数与AFP表达呈正相关(r=0.475,P<0.001)。RNAseq数据验证结果与TCGA数据分析结果基本一致。RT-qPCR检测结果显示,特征基因集中AURKB、KIF15和UBE2C在AFP高表达HCC组织中显著高表达,其表达虽然与HCC患者的无病生存、总生存无关,但AFP低表达组患者的无病生存曲线和总生存曲线均在AFP高表达组患者之上。 结论: AFP高表达和AFP低表达HCC在基因表达谱上存在较大差异。筛选出的特征基因集可能协同AFP共同促进HCC的发生发展,其对解释不同水平AFP HCC的作用机制有一定作用,并为HCC的预后判断提供了新的思路和依据。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ace完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
fpxxx发布了新的文献求助10
2秒前
复成发布了新的文献求助10
3秒前
4秒前
4秒前
司马秋凌发布了新的文献求助10
4秒前
4秒前
4秒前
Ting发布了新的文献求助10
4秒前
诚c发布了新的文献求助10
5秒前
DamenS发布了新的文献求助10
6秒前
打打应助李西瓜采纳,获得10
6秒前
帅气的老五完成签到,获得积分10
7秒前
香菜头发布了新的文献求助10
7秒前
香菜头发布了新的文献求助30
7秒前
香菜头发布了新的文献求助10
8秒前
香菜头发布了新的文献求助10
8秒前
xiao发布了新的文献求助10
8秒前
李健的粉丝团团长应助xxx采纳,获得10
8秒前
ynchendt完成签到,获得积分10
8秒前
duke完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
萝卜卜完成签到,获得积分10
12秒前
66完成签到,获得积分10
14秒前
14秒前
Owen应助学术小天才采纳,获得10
14秒前
雪山飞龙发布了新的文献求助10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621033
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933493
捐赠科研通 4764401
什么是DOI,文献DOI怎么找? 2551437
邀请新用户注册赠送积分活动 1513993
关于科研通互助平台的介绍 1474742