已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Differential analysis of gene expression profiles in hepatocellular carcinoma patients with high and low levels of alpha-fetoprotein].

肝细胞癌 基因 基因表达 生物 转录组 基因表达谱 错误发现率 甲胎蛋白 小桶 生物信息学 计算生物学 分子生物学 遗传学
作者
X J Wang,Rongfang Shen,Xin Wang,Y R Wang,Ting Xiao
出处
期刊:PubMed 卷期号:42 (5): 396-402
标识
DOI:10.3760/cma.j.cn112152-112152-20191115-00740
摘要

Objective: To investigate the differential gene expression profiles of alpha-fetoprotein (AFP) high- and low-expressing hepatocellular carcinoma (HCC), and to provide a theoretical basis for the molecular mechanism and prognosis analysis of HCC. Methods: The transcriptome data and related clinical information from 368 HCC cases were obtained from the Cancer Gene Atlas (TCGA) public database. The samples were divided into AFP high expression (AFP(high)) group and low expression (AFP(low)) group according to the quartile of AFP mRNA expression, with 92 cases in each group. The differential gene analysis was carried out using the DEseq2 package in the R software. The functional and KEGG pathway enrichment analysis of the differential genes was performed using ClusterProfiler package. The protein-protein interaction network was constructed to screen hub genes using the String database and Cytoscape software. The single-sample GSEA analysis was performed to enrich and score signature gene sets using the GSVA package. And then RNAseq data and real-time quantitative polymerase chain reaction (RT-qPCR) were used for independent dataset validation and tissue validation. Results: The clinical analysis showed that high expression of AFP was significantly associated with poor pathological differentiation and ethnicity (P<0.05 for both). A total of 1 382 differential genes were obtained by bioinformatics analysis, of which 931 genes were up-regulated and 451 genes were down-regulated in AFP(high) group. GO enrichment analysis showed that the highly expressed genes were mainly correlated with the processes of appendage development, limb development, and skeletal system development, while lowly expressed genes were related to metabolic-related processes such as xenobiotic metabolism, steroid metabolism, and cellular response to xenobiotic stimuli. KEGG pathway enrichment analysis revealed that highly expressed genes were mainly involved in primary immunodeficiency, neuroactive ligand-receptor interaction, and cytokine-cytokine receptor interaction, while lowly expressed genes were mainly involved in retinol metabolism, chemical carcinogenesis, steroid hormone biosynthesis and other pathways. A prognostic related gene set that was consisted of AURKB, TTK, CENPA, UBE2C, HJURP, and KIF15 was identified. And the high expression of this gene set was related to the shorter recurrence-free survival and overall survival time in HCC patients, and its enrichment score was positively correlated with AFP expression (r=0.475, P<0.001). The validation results of RNAseq data were basically consistent with the TCGA data. The RT-qPCR results showed that AURKB, KIF15, and UBE2C were significantly overexpressed in HCC tissues with high AFP expression. Although the expression of AURKB, TTK, KIF15, and UBE2C was not related to recurrence-free survival and overall survival of HCC patients, there was a tendency that the patients with high AFP levels showed relatively shorter recurrence-free survival time and overall survival time. Conclusions: There is a large difference in gene expression profiles between AFP(high) and AFP(low) HCC. The prognostic signature may cooperate with AFP to promote the initiation and development of HCC. It also may explain the tumorigenesis in HCC with different AFP levels, and provide new clues for the prognosis of HCC.目的: 探讨甲胎蛋白(AFP)高表达和低表达肝细胞肝癌(HCC)中的差异表达基因表达谱,为HCC的分子机制研究及预后判断提供理论依据。 方法: 从肿瘤基因图谱计划(TCGA)公共数据库获得368例包含完整临床信息的HCC转录组数据,根据组织AFP mRNA表达四分位数将样本分为AFP高表达组和AFP低表达组,每组各92例。应用R软件中的DEseq2包进行差异表达基因分析,应用ClusterProfiler包对差异表达基因进行基因本体论(GO)功能分析和京都基因与基因组百科全书(KEGG)通路分析,应用String数据库和Cytoscape软件构建蛋白相互作用网络,筛选关键基因。采用单样本基因集富集分析方法,通过R软件GSVA包对特征基因进行富集评分,根据得分定义特征基因集表达情况。利用RNAseq数据和实时荧光定量聚合酶链反应(RT-qPCR)进行独立数据集验证和组织验证。 结果: TCGA数据分析显示,AFP高表达与HCC低分化、患者人种有关(均P<0.05)。生物信息学分析共获得1 382个差异表达基因,其中931个基因在AFP高表达组织中表达上调,451个基因表达下调。GO功能分析显示,AFP高表达组织中高表达的基因主要与附属肢体发育、肢体发育、骨架系统发育等过程有关,而低表达基因则与异源物代谢、类固醇代谢、细胞对异生物刺激反应等代谢相关过程有关。KEGG通路分析显示,AFP高表达组织中高表达的基因主要参与原发性免疫缺陷、神经活性配体-受体相互作用、细胞因子-细胞因子受体相互作用通路,而低表达基因主要与视黄醇代谢、化学致癌作用、类固醇激素的生物合成等通路相关。鉴定出1个预后相关特征基因集,该基因集包括AURKB、TTK、CENPA、UBE2C、HJURP、KIF15,其高表达与HCC患者的无复发生存和总生存有关,且特征基因集富集分数与AFP表达呈正相关(r=0.475,P<0.001)。RNAseq数据验证结果与TCGA数据分析结果基本一致。RT-qPCR检测结果显示,特征基因集中AURKB、KIF15和UBE2C在AFP高表达HCC组织中显著高表达,其表达虽然与HCC患者的无病生存、总生存无关,但AFP低表达组患者的无病生存曲线和总生存曲线均在AFP高表达组患者之上。 结论: AFP高表达和AFP低表达HCC在基因表达谱上存在较大差异。筛选出的特征基因集可能协同AFP共同促进HCC的发生发展,其对解释不同水平AFP HCC的作用机制有一定作用,并为HCC的预后判断提供了新的思路和依据。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
貔貅发布了新的文献求助10
3秒前
fufu完成签到 ,获得积分20
3秒前
4秒前
神明发布了新的文献求助10
5秒前
科目三应助镜哥采纳,获得30
6秒前
Pp发布了新的文献求助10
6秒前
ffff发布了新的文献求助10
7秒前
9秒前
由清涟发布了新的文献求助10
11秒前
请输入昵称完成签到 ,获得积分10
11秒前
脑洞疼应助神明采纳,获得30
11秒前
大个应助ffff采纳,获得10
18秒前
tt完成签到 ,获得积分10
19秒前
20秒前
健忘的金完成签到 ,获得积分10
24秒前
周墨完成签到 ,获得积分10
25秒前
26秒前
英俊的铭应助读书的时候采纳,获得30
26秒前
27秒前
顾矜应助由清涟采纳,获得30
27秒前
科研通AI6.1应助wang采纳,获得10
29秒前
芽芽豆完成签到 ,获得积分10
29秒前
Freedom完成签到 ,获得积分10
29秒前
yihuifa完成签到 ,获得积分10
30秒前
30秒前
30秒前
30秒前
苏11发布了新的文献求助10
31秒前
31秒前
zhangwj226完成签到,获得积分10
32秒前
遇上就这样吧完成签到,获得积分0
32秒前
奎奎完成签到 ,获得积分10
32秒前
36秒前
38秒前
小莹子发布了新的文献求助30
40秒前
41秒前
43秒前
46秒前
无私航空发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738936
求助须知:如何正确求助?哪些是违规求助? 5381771
关于积分的说明 15338906
捐赠科研通 4881720
什么是DOI,文献DOI怎么找? 2623864
邀请新用户注册赠送积分活动 1572542
关于科研通互助平台的介绍 1529309