Optimization for Sequencing and Analysis of Degraded FFPE-RNA Samples

计算生物学 核糖核酸 DNA测序 再现性 序列分析 基因表达谱 RNA序列 生物 数据挖掘 计算机科学 基因 基因表达 生物信息学 遗传学 转录组 数学 统计
作者
Yelena Levin,Keyur Talsania,Bao Tran,Jyoti Shetty,Yongmei Zhao,Monika Mehta
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (160) 被引量:12
标识
DOI:10.3791/61060
摘要

Gene expression analysis by RNA sequencing (RNA-seq) enables unique insights into clinical samples that can potentially lead to mechanistic understanding of the basis of various diseases as well as resistance and/or susceptibility mechanisms. However, FFPE tissues, which represent the most common method for preserving tissue morphology in clinical specimens, are not the best sources for gene expression profiling analysis. The RNA obtained from such samples is often degraded, fragmented, and chemically modified, which leads to suboptimal sequencing libraries. In turn, these generate poor quality sequence data that may not be reliable for gene expression analysis and mutation discovery. In order to make the most of FFPE samples and obtain the best possible data from low quality samples, it is important to take certain precautions while planning experimental design, preparing sequencing libraries, and during data analysis. This includes the use of appropriate metrics for precise sample quality control (QC), identifying the best methods for various steps during the sequencing library generation, and careful library QC. In addition, applying correct software tools and parameters for sequence data analysis is critical in order to identify artifacts in RNA-seq data, filter out contamination and low quality reads, assess uniformity of gene coverage, and measure the reproducibility of gene expression profiles among biological replicates. These steps can ensure high accuracy and reproducibility for profiling of very heterogeneous RNA samples. Here we describe the various steps for sample QC, library preparation and QC, sequencing, and data analysis that can help to increase the amount of useful data obtained from low quality RNA, such as that obtained from FFPE-RNA tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉平松完成签到 ,获得积分10
刚刚
顺利盼曼发布了新的文献求助10
2秒前
厉不厉害你坤哥应助鹿子采纳,获得10
2秒前
3秒前
4秒前
请叫我风吹麦浪应助糖果采纳,获得10
5秒前
Litm完成签到 ,获得积分10
5秒前
6秒前
9秒前
两酒窝完成签到,获得积分10
10秒前
CodeCraft应助幽默的宛白采纳,获得10
11秒前
小小熹发布了新的文献求助30
11秒前
季秋发布了新的文献求助10
11秒前
我是老大应助sunnyfish007采纳,获得10
12秒前
14秒前
若渝12345完成签到,获得积分10
14秒前
岁月星辰完成签到,获得积分10
16秒前
Yifan2024应助sxy采纳,获得50
18秒前
HEROTREE完成签到 ,获得积分10
18秒前
蟹蟹发布了新的文献求助10
19秒前
天天快乐应助默默纸飞机采纳,获得10
19秒前
20秒前
HaroldNguyen完成签到,获得积分10
20秒前
黄毅完成签到 ,获得积分10
25秒前
wanci应助季秋采纳,获得10
25秒前
26秒前
闪闪剑通发布了新的文献求助10
27秒前
27秒前
茜茜完成签到,获得积分10
30秒前
赵凯完成签到,获得积分10
31秒前
32秒前
32秒前
怡然雨雪完成签到,获得积分10
34秒前
温婉的凡阳完成签到 ,获得积分10
34秒前
35秒前
35秒前
35秒前
36秒前
慕青应助lili采纳,获得10
36秒前
PPPP发布了新的文献求助10
37秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720