超弹性材料
变形(气象学)
材料科学
计算机科学
有限元法
结构工程
复合材料
工程类
作者
Vien Minh Nguyen-Thanh,Xiaoying Zhuang,Timon Rabczuk
标识
DOI:10.1016/j.euromechsol.2019.103874
摘要
Abstract We present a deep energy method for finite deformation hyperelasticitiy using deep neural networks (DNNs). The method avoids entirely a discretization such as FEM. Instead, the potential energy as a loss function of the system is directly minimized. To train the DNNs, a backpropagation dealing with the gradient loss is computed and then the minimization is performed by a standard optimizer. The learning process will yield the neural network's parameters (weights and biases). Once the network is trained, a numerical solution can be obtained much faster compared to a classical approach based on finite elements for instance. The presented approach is very simple to implement and requires only a few lines of code within the open-source machine learning framework such as Tensorflow or Pytorch. Finally, we demonstrate the performance of our DNNs based solution for several benchmark problems, which shows comparable computational efficiency such as FEM solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI