Association between body composition and osteoarthritis: A systematic review and meta‐analysis

医学 优势比 置信区间 骨关节炎 瘦体质量 内科学 荟萃分析 体质指数 相对风险 队列研究 脂肪团 病理 体重 替代医学
作者
Huizhong Long,Dongxing Xie,Chao Zeng,Jie Wei,Yilun Wang,Tuo Yang,Bei Xu,Yuxuan Qian,Jiatian Li,Ziying Wu,Guanghua Lei
出处
期刊:International Journal of Rheumatic Diseases [Wiley]
卷期号:22 (12): 2108-2118 被引量:15
标识
DOI:10.1111/1756-185x.13719
摘要

Abstract Objectives To examine the association between body composition and osteoarthritis (OA). Methods An extensive literature review was performed to identify studies that examined the association between body composition and OA. The mean difference (MD), odds ratio (OR), relative risk (RR) and corresponding 95% confidence intervals (CIs) were determined using RevMan statistical software. Results A total of 19 studies were included. The combined MD showed the fat mass of the subjects with knee OA was higher than that of the control group (MD 4.38, 95% CI: 2.84‐5.92). Both fat mass and fat mass percentage were positively associated with knee OA (ORs ranged from 1.49, 95% CI: 1.15‐1.92, to 2.37, 95% CI: 1.18‐4.74). Similar findings were observed in hip and hand joints as well (ORs ranged from 1.20, 95% CI: 1.08‐1.32, to 1.87, 95% CI: 1.11‐3.15), and such results were also confirmed by most cohort studies of knee and hip OA (RRs ranged from 0.98, 95% CI: 0.95‐1.01, to 3.60, 95% CI: 2.60‐5.00). Lean mass was also positively associated with knee OA (OR 1.48, 95% CI: 1.13‐1.94). However, lean mass percentage was negatively associated with knee OA (OR 0.65, 95% CI: 0.46‐0.92). Conclusions Both fat mass and fat mass percentage were likely to be risk factors for knee, hip and hand OA. Similarly, lean mass also seemed to be a risk factor for knee OA, while lean mass percentage seemed to be a protective factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助qfchen0716网易采纳,获得10
1秒前
JamesPei应助qfchen0716网易采纳,获得10
1秒前
丘比特应助qfchen0716网易采纳,获得10
1秒前
子川发布了新的文献求助10
1秒前
田様应助qfchen0716网易采纳,获得10
1秒前
科目三应助qfchen0716网易采纳,获得10
2秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
2秒前
rr发布了新的文献求助10
2秒前
科目三应助qfchen0716网易采纳,获得10
2秒前
Orange应助qfchen0716网易采纳,获得10
2秒前
FashionBoy应助qfchen0716网易采纳,获得10
2秒前
今后应助qfchen0716网易采纳,获得10
2秒前
汉堡包应助Rober采纳,获得10
2秒前
3秒前
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
张大旭77发布了新的文献求助10
6秒前
8秒前
科研通AI5应助感动苡采纳,获得10
9秒前
雪山大地完成签到,获得积分10
9秒前
Beton_X发布了新的文献求助40
10秒前
11秒前
11秒前
嘿嘿嘿发布了新的文献求助10
11秒前
11秒前
12秒前
小肥鑫发布了新的文献求助10
13秒前
14秒前
scoot完成签到 ,获得积分10
14秒前
wjx关闭了wjx文献求助
14秒前
14秒前
蛋挞完成签到,获得积分20
14秒前
hhh完成签到 ,获得积分10
16秒前
爱学习发布了新的文献求助10
16秒前
张张发布了新的文献求助10
16秒前
wangsai0532完成签到,获得积分10
17秒前
17秒前
SciGPT应助1111111111111111采纳,获得10
17秒前
17秒前
Aaron完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676