A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism

电池组 计算机科学 电池(电) 体积热力学 电动汽车蓄电池 有限元法 热的 汽车工程 工程类 结构工程 功率(物理) 物理 热力学
作者
Akhil Garg,C. Ruhatiya,Xujian Cui,Xiongbin Peng,Yogesh Bhalerao,Liang Gao
出处
期刊:Journal of electrochemical energy conversion and storage [ASME International]
卷期号:17 (2) 被引量:10
标识
DOI:10.1115/1.4045194
摘要

Abstract Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsblb完成签到,获得积分10
1秒前
1秒前
ESLG完成签到 ,获得积分10
2秒前
MgO完成签到,获得积分10
2秒前
sisisij完成签到,获得积分20
2秒前
G12345发布了新的文献求助10
3秒前
yancy完成签到,获得积分10
3秒前
5秒前
颜陌发布了新的文献求助10
6秒前
6秒前
yjn完成签到,获得积分10
6秒前
科研通AI2S应助酥糖采纳,获得10
8秒前
hq发布了新的文献求助10
9秒前
舒适的雪珍完成签到 ,获得积分10
11秒前
15秒前
七七完成签到,获得积分10
17秒前
NexusExplorer应助off采纳,获得10
18秒前
18秒前
别骂小喷菇完成签到,获得积分10
19秒前
20秒前
结实的寄柔应助迷路睫毛采纳,获得10
21秒前
21秒前
22秒前
杨书朋发布了新的文献求助10
23秒前
princyy49发布了新的文献求助30
23秒前
哈哈哈哈关注了科研通微信公众号
24秒前
我是老大应助changxu采纳,获得10
24秒前
与一完成签到 ,获得积分10
25秒前
SciGPT应助sisisij采纳,获得10
26秒前
soar完成签到 ,获得积分10
27秒前
mawanyu完成签到 ,获得积分10
27秒前
27秒前
科研通AI2S应助Saluzi采纳,获得10
28秒前
隐形曼青应助颜陌采纳,获得10
29秒前
hhhhh发布了新的文献求助10
29秒前
852应助勤奋曼雁采纳,获得10
29秒前
30秒前
32秒前
闪闪的向梦完成签到,获得积分20
33秒前
liuliu发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133403
求助须知:如何正确求助?哪些是违规求助? 2784523
关于积分的说明 7767305
捐赠科研通 2439720
什么是DOI,文献DOI怎么找? 1296943
科研通“疑难数据库(出版商)”最低求助积分说明 624827
版权声明 600771