A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism

电池组 计算机科学 电池(电) 体积热力学 电动汽车蓄电池 有限元法 热的 汽车工程 工程类 结构工程 功率(物理) 物理 热力学
作者
Akhil Garg,C. Ruhatiya,Xujian Cui,Xiongbin Peng,Yogesh Bhalerao,Liang Gao
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:17 (2) 被引量:10
标识
DOI:10.1115/1.4045194
摘要

Abstract Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanwen完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
充电宝应助眼镜胖子采纳,获得10
7秒前
情怀应助破心采纳,获得10
7秒前
LEI发布了新的文献求助10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
研友_ngkyGn应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
Bio应助科研通管家采纳,获得30
9秒前
大个应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得30
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
Liufgui应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得20
10秒前
彭于晏应助科研通管家采纳,获得30
10秒前
花花应助科研通管家采纳,获得10
10秒前
Sid应助科研通管家采纳,获得20
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070