清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analysing Representations of Obesity in the Daily Mail via Corpus and Down-Sampling Methods

采样(信号处理) 计算机科学 自然语言处理 肥胖 人工智能 医学 电信 内科学 探测器
作者
Paul Baker
出处
期刊:Routledge eBooks [Informa]
卷期号:: 85-108 被引量:2
标识
DOI:10.4324/9781315112466-4
摘要

Media reporting of obesity has been criticised in academic research as alarmist. Some researchers describe how such reporting is perceived by obese people as portraying them as freaks and enemies of society who are rarely given a voice unless successfully losing weight, which the authors argue is a form of ‘synoptical’ social control. In reporting on obesity, researchers claim that newspapers can influence perceptions, having implications for public policy such as their diachronic study of U.S. newspapers from 1990 to 2007 indicated a shift from a deterministic view of obesity (e.g. genetic factors) toward one based on personal responsibility (e.g. diet and exercise). This study examines a corpus of articles from the British newspaper The Daily Mail about obesity (published between 2012 and 2016), collected from LexisNexis, with the aim of (i) identifying how language is used to represent obese people and (ii) comparing traditional methods of critical discourse analysis with a corpus-based approach. First, close readings were carried out on four samples of the corpus, using four sampling techniques. Ten articles from each of the sampling conditions was collected, considering phenomena commonly focussed on in critical discourse studies approaches to text analysis, including quotation patterns, narrative structure, and argumentation strategies as well as lexical choice, grammatical relationships, and metaphor. Second, collocation patterns were used with concordance analyses in order to identify salient and consistent ways that obese people are represented across the whole corpus. Having carried out the analyses, a meta-analysis compared the findings elicited by different techniques in order to identify the extent that they overlapped or gave dissonant results. I found that a combination of a corpus approach with one or more sampling methods produced a slightly wider range of complementary findings, especially when corpus techniques were triangulated with samples of articles containing highly frequent mentions of the topic under discussion. The corpus approach as used in this chapter was better at identifying representations around obese people but performed slightly worse than qualitative analyses of samples in terms of revealing a range of causes of obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
28秒前
从来都不会放弃zr完成签到,获得积分10
29秒前
萝卜猪完成签到,获得积分10
36秒前
dream完成签到 ,获得积分10
38秒前
44秒前
琳io完成签到 ,获得积分10
1分钟前
laohei94_6完成签到 ,获得积分10
1分钟前
1分钟前
无花果应助紫色奶萨采纳,获得10
1分钟前
1分钟前
科研通AI2S应助arsenal采纳,获得10
1分钟前
狂野宛凝发布了新的文献求助10
1分钟前
1分钟前
光亮静槐完成签到 ,获得积分10
1分钟前
Echopotter发布了新的文献求助10
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Echopotter完成签到,获得积分10
1分钟前
1分钟前
Jenny发布了新的文献求助30
2分钟前
liwen发布了新的文献求助100
2分钟前
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
斯提亚拉发布了新的文献求助10
2分钟前
牛黄完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
两个榴莲完成签到,获得积分0
3分钟前
ceeray23发布了新的文献求助30
3分钟前
3分钟前
袁青寒发布了新的文献求助10
3分钟前
zxq完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
lucky完成签到 ,获得积分10
3分钟前
绿色猫猫头完成签到 ,获得积分10
4分钟前
CodeCraft应助斯提亚拉采纳,获得10
4分钟前
wrl2023完成签到,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
Qing完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503