Analysing Representations of Obesity in the Daily Mail via Corpus and Down-Sampling Methods

采样(信号处理) 计算机科学 自然语言处理 肥胖 人工智能 医学 电信 内科学 探测器
作者
Paul Baker
出处
期刊:Routledge eBooks [Informa]
卷期号:: 85-108 被引量:2
标识
DOI:10.4324/9781315112466-4
摘要

Media reporting of obesity has been criticised in academic research as alarmist. Some researchers describe how such reporting is perceived by obese people as portraying them as freaks and enemies of society who are rarely given a voice unless successfully losing weight, which the authors argue is a form of ‘synoptical’ social control. In reporting on obesity, researchers claim that newspapers can influence perceptions, having implications for public policy such as their diachronic study of U.S. newspapers from 1990 to 2007 indicated a shift from a deterministic view of obesity (e.g. genetic factors) toward one based on personal responsibility (e.g. diet and exercise). This study examines a corpus of articles from the British newspaper The Daily Mail about obesity (published between 2012 and 2016), collected from LexisNexis, with the aim of (i) identifying how language is used to represent obese people and (ii) comparing traditional methods of critical discourse analysis with a corpus-based approach. First, close readings were carried out on four samples of the corpus, using four sampling techniques. Ten articles from each of the sampling conditions was collected, considering phenomena commonly focussed on in critical discourse studies approaches to text analysis, including quotation patterns, narrative structure, and argumentation strategies as well as lexical choice, grammatical relationships, and metaphor. Second, collocation patterns were used with concordance analyses in order to identify salient and consistent ways that obese people are represented across the whole corpus. Having carried out the analyses, a meta-analysis compared the findings elicited by different techniques in order to identify the extent that they overlapped or gave dissonant results. I found that a combination of a corpus approach with one or more sampling methods produced a slightly wider range of complementary findings, especially when corpus techniques were triangulated with samples of articles containing highly frequent mentions of the topic under discussion. The corpus approach as used in this chapter was better at identifying representations around obese people but performed slightly worse than qualitative analyses of samples in terms of revealing a range of causes of obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助luan采纳,获得10
1秒前
1秒前
荷塘月色完成签到,获得积分10
1秒前
1秒前
Mike14发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
3秒前
Dexter发布了新的文献求助10
4秒前
思源应助风清扬采纳,获得30
4秒前
8R60d8应助jiajia采纳,获得20
4秒前
5秒前
5秒前
852应助JIAca采纳,获得10
5秒前
虚心岂愈发布了新的文献求助10
6秒前
zhuzhu发布了新的文献求助30
7秒前
爆米花应助笑笑采纳,获得10
8秒前
aqiuyuehe发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
wjx发布了新的文献求助10
8秒前
十一发布了新的文献求助10
8秒前
ynlqjqx发布了新的文献求助10
9秒前
小鲨鱼发布了新的文献求助10
9秒前
tianyue发布了新的文献求助10
9秒前
77发布了新的文献求助30
10秒前
柚子蟹完成签到,获得积分10
11秒前
Mike14完成签到,获得积分10
11秒前
七友完成签到,获得积分10
12秒前
lancetwu完成签到,获得积分10
14秒前
万能图书馆应助hhh采纳,获得10
14秒前
彭于晏应助qi采纳,获得10
15秒前
16秒前
zinan完成签到,获得积分20
17秒前
搜集达人应助tianyue采纳,获得10
18秒前
Wow发布了新的文献求助10
19秒前
19秒前
大模型应助lyric采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605700
求助须知:如何正确求助?哪些是违规求助? 4013370
关于积分的说明 12427232
捐赠科研通 3694209
什么是DOI,文献DOI怎么找? 2036815
邀请新用户注册赠送积分活动 1069756
科研通“疑难数据库(出版商)”最低求助积分说明 953990