Analysing Representations of Obesity in the Daily Mail via Corpus and Down-Sampling Methods

采样(信号处理) 计算机科学 自然语言处理 肥胖 人工智能 医学 电信 内科学 探测器
作者
Paul Baker
出处
期刊:Routledge eBooks [Informa]
卷期号:: 85-108 被引量:2
标识
DOI:10.4324/9781315112466-4
摘要

Media reporting of obesity has been criticised in academic research as alarmist. Some researchers describe how such reporting is perceived by obese people as portraying them as freaks and enemies of society who are rarely given a voice unless successfully losing weight, which the authors argue is a form of ‘synoptical’ social control. In reporting on obesity, researchers claim that newspapers can influence perceptions, having implications for public policy such as their diachronic study of U.S. newspapers from 1990 to 2007 indicated a shift from a deterministic view of obesity (e.g. genetic factors) toward one based on personal responsibility (e.g. diet and exercise). This study examines a corpus of articles from the British newspaper The Daily Mail about obesity (published between 2012 and 2016), collected from LexisNexis, with the aim of (i) identifying how language is used to represent obese people and (ii) comparing traditional methods of critical discourse analysis with a corpus-based approach. First, close readings were carried out on four samples of the corpus, using four sampling techniques. Ten articles from each of the sampling conditions was collected, considering phenomena commonly focussed on in critical discourse studies approaches to text analysis, including quotation patterns, narrative structure, and argumentation strategies as well as lexical choice, grammatical relationships, and metaphor. Second, collocation patterns were used with concordance analyses in order to identify salient and consistent ways that obese people are represented across the whole corpus. Having carried out the analyses, a meta-analysis compared the findings elicited by different techniques in order to identify the extent that they overlapped or gave dissonant results. I found that a combination of a corpus approach with one or more sampling methods produced a slightly wider range of complementary findings, especially when corpus techniques were triangulated with samples of articles containing highly frequent mentions of the topic under discussion. The corpus approach as used in this chapter was better at identifying representations around obese people but performed slightly worse than qualitative analyses of samples in terms of revealing a range of causes of obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊咩咩哒完成签到,获得积分10
刚刚
2秒前
cmmmmmm完成签到,获得积分10
2秒前
2秒前
简简单单完成签到,获得积分10
2秒前
有机小鸟发布了新的文献求助10
2秒前
xingxinghan完成签到 ,获得积分10
3秒前
资浩阑完成签到,获得积分10
4秒前
星空之下ssr完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
Jimmy Ko完成签到,获得积分10
4秒前
充电宝应助Pom采纳,获得10
5秒前
5秒前
jwxstc发布了新的文献求助10
5秒前
cola121完成签到 ,获得积分10
5秒前
qiu完成签到,获得积分10
7秒前
Jimmy Ko发布了新的文献求助10
7秒前
聪明怜阳发布了新的文献求助10
8秒前
8秒前
8秒前
whs完成签到,获得积分10
8秒前
伍纲稳发布了新的文献求助10
9秒前
华仔应助能干砖家采纳,获得10
9秒前
9秒前
英姑应助张mingyu123采纳,获得10
10秒前
你一笑就晴朗完成签到,获得积分10
11秒前
俞骁俞骁完成签到 ,获得积分10
11秒前
CRUSADER发布了新的文献求助10
11秒前
zhuooo完成签到,获得积分10
11秒前
13秒前
13秒前
宁典完成签到,获得积分10
13秒前
蓝鲸发布了新的文献求助10
14秒前
852应助22222采纳,获得10
14秒前
15秒前
CC完成签到,获得积分10
15秒前
桂花酒酿发布了新的文献求助30
16秒前
Lucas应助77采纳,获得10
16秒前
Ava应助钱念波采纳,获得10
16秒前
能干的丸子完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382