德拜模型
凝聚态物理
超导电性
相干势近似
物理
声子
黛比
环境压力
兰姆达
电子结构
材料科学
热力学
量子力学
作者
K. Jasiewicz,Bartłomiej Wiendlocha,Karolina Górnicka,Krzysztof Gofryk,Maria Gazda,Tomasz Klimczuk,J. Toboła
出处
期刊:Physical review
日期:2019-11-04
卷期号:100 (18)
被引量:22
标识
DOI:10.1103/physrevb.100.184503
摘要
Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy ${(\mathrm{TaNb})}_{0.67}{(\mathrm{HfZrTi})}_{0.33}$ are studied in the pressure range 0--100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr\"uneisen model and the Gr\"uneisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter $\ensuremath{\lambda}$ is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin-tin approximation. We find that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter $\ensuremath{\lambda}$ decreases above 10 GPa. The calculated superconducting ${T}_{c}$ increases up to 40--50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of ${T}_{c}$ with pressure in ${(\mathrm{TaNb})}_{0.67}{(\mathrm{HfZrTi})}_{0.33}$ can be well explained by the classical electron-phonon mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI