Tumor-associated exosomal miRNA biomarkers to differentiate metastatic vs. nonmetastatic non-small cell lung cancer

医学 小RNA 外体 肿瘤科 肺癌 微泡 内科学 生物标志物 队列 癌症 转移 癌症研究 生物 基因 生物化学
作者
Ning Wang,Weijian Guo,Xianrang Song,Lisheng Liu,Limin Niu,Xianrang Song,Li Xie
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:58 (9): 1535-1545 被引量:15
标识
DOI:10.1515/cclm-2019-1329
摘要

Abstract Background Exosomal microRNAs (miRNAs) are proposed to be excellent candidate biomarkers for clinical applications. However, little is known about their potential value as diagnostic biomarkers for metastatic non-small cell lung cancer (NSCLC). Methods In this study, microarrays were used to determine distinct miRNA profiles of plasma exosomes in a discovery cohort of healthy donors, metastatic NSCLC and nonmetastatic NSCLC patients. Three potential candidate miRNAs were selected based on the differential expression profiles. The discovery set data were validated by quantitative real-time polymerase chain reaction using a validation cohort. Results NSCLC patients (n = 80) and healthy controls (n = 30) had different exosome-related miRNA profiles in plasma. Results demonstrated that the level of let-7f-5p was decreased in plasma exosomes of NSCLC patients (p < 0.0001). Further analysis of three differentially expressed miRNAs revealed that miR-320a, miR-622 and let-7f-5p levels could significantly segregate patients with metastatic NSCLC from patients with nonmetastatic NSCLC (p < 0.0001, p < 0.0001 and p = 0.023, respectively). In addition, the combination of let-7f-5p, CEA and Cyfra21-1 generated an area under the curve (AUC) of 0.981 for the diagnosis of NSCLC patients, and the combination of miR-320a, miR-622, CEA and Cyfra21-1 had an AUC of 0.900 for the diagnosis of patients with metastatic NSCLC. Conclusions This novel study demonstrated that plasma exosomal miRNAs are promising noninvasive diagnostic biomarkers for metastatic NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MingQue完成签到,获得积分10
刚刚
橙子发布了新的文献求助10
1秒前
1秒前
科研通AI5应助flysky120采纳,获得10
1秒前
kingwill发布了新的文献求助30
2秒前
稳重诗珊发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助金色热浪采纳,获得10
3秒前
余与鱼完成签到,获得积分10
3秒前
ganxie发布了新的文献求助20
3秒前
外向梨愁发布了新的文献求助10
3秒前
哩哩完成签到 ,获得积分10
3秒前
xy发布了新的文献求助10
4秒前
愤怒的雨莲完成签到,获得积分10
4秒前
zho应助小郭采纳,获得50
5秒前
小天才发布了新的文献求助10
6秒前
7秒前
Jenny发布了新的文献求助10
7秒前
gxy完成签到,获得积分20
8秒前
在水一方应助科研小白采纳,获得10
8秒前
充电宝应助ga1ada采纳,获得10
8秒前
科研通AI5应助1GE采纳,获得10
9秒前
9秒前
领导范儿应助annie采纳,获得30
10秒前
10秒前
10秒前
11秒前
paparazzi221发布了新的文献求助10
11秒前
gxy发布了新的文献求助30
12秒前
ll发布了新的文献求助30
12秒前
13秒前
fqx379完成签到,获得积分0
15秒前
化工小蠕虫完成签到,获得积分10
15秒前
15秒前
16秒前
Aqua发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
不安涔完成签到 ,获得积分10
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3480155
求助须知:如何正确求助?哪些是违规求助? 3070670
关于积分的说明 9118363
捐赠科研通 2762302
什么是DOI,文献DOI怎么找? 1515737
邀请新用户注册赠送积分活动 701185
科研通“疑难数据库(出版商)”最低求助积分说明 700102