Tumor-associated exosomal miRNA biomarkers to differentiate metastatic vs. nonmetastatic non-small cell lung cancer

医学 小RNA 外体 肿瘤科 肺癌 微泡 内科学 生物标志物 队列 癌症 转移 癌症研究 生物 基因 生物化学
作者
Ning Wang,Weijian Guo,Xianrang Song,Lisheng Liu,Limin Niu,Xianrang Song,Li Xie
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:58 (9): 1535-1545 被引量:15
标识
DOI:10.1515/cclm-2019-1329
摘要

Abstract Background Exosomal microRNAs (miRNAs) are proposed to be excellent candidate biomarkers for clinical applications. However, little is known about their potential value as diagnostic biomarkers for metastatic non-small cell lung cancer (NSCLC). Methods In this study, microarrays were used to determine distinct miRNA profiles of plasma exosomes in a discovery cohort of healthy donors, metastatic NSCLC and nonmetastatic NSCLC patients. Three potential candidate miRNAs were selected based on the differential expression profiles. The discovery set data were validated by quantitative real-time polymerase chain reaction using a validation cohort. Results NSCLC patients (n = 80) and healthy controls (n = 30) had different exosome-related miRNA profiles in plasma. Results demonstrated that the level of let-7f-5p was decreased in plasma exosomes of NSCLC patients (p < 0.0001). Further analysis of three differentially expressed miRNAs revealed that miR-320a, miR-622 and let-7f-5p levels could significantly segregate patients with metastatic NSCLC from patients with nonmetastatic NSCLC (p < 0.0001, p < 0.0001 and p = 0.023, respectively). In addition, the combination of let-7f-5p, CEA and Cyfra21-1 generated an area under the curve (AUC) of 0.981 for the diagnosis of NSCLC patients, and the combination of miR-320a, miR-622, CEA and Cyfra21-1 had an AUC of 0.900 for the diagnosis of patients with metastatic NSCLC. Conclusions This novel study demonstrated that plasma exosomal miRNAs are promising noninvasive diagnostic biomarkers for metastatic NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老实乌冬面完成签到 ,获得积分10
刚刚
糖糖爱干饭完成签到 ,获得积分10
刚刚
fhhkckk3完成签到,获得积分10
1秒前
月亮端着大碗完成签到 ,获得积分20
1秒前
稳重的如容完成签到,获得积分10
1秒前
song_song完成签到,获得积分10
2秒前
东方樱发布了新的文献求助10
2秒前
yun完成签到,获得积分10
2秒前
_shiy完成签到,获得积分10
3秒前
开卷有益发布了新的文献求助10
5秒前
Stellar777完成签到,获得积分20
5秒前
飞火完成签到 ,获得积分10
6秒前
沉甸甸完成签到,获得积分10
6秒前
logan完成签到,获得积分10
6秒前
黄迪迪完成签到 ,获得积分10
6秒前
elena完成签到,获得积分10
7秒前
落寞宝马发布了新的文献求助50
7秒前
霉凡脑完成签到,获得积分10
7秒前
黑猫小苍完成签到,获得积分10
7秒前
感动的听荷完成签到,获得积分10
8秒前
大模型应助guojingjing采纳,获得10
8秒前
8秒前
JamesPei应助bb采纳,获得10
9秒前
开心的茗茗完成签到 ,获得积分10
9秒前
e394282438完成签到,获得积分10
9秒前
Emily完成签到,获得积分10
9秒前
松思完成签到,获得积分10
9秒前
文艺的老虎完成签到,获得积分10
10秒前
lyl19880908完成签到,获得积分0
11秒前
zy完成签到 ,获得积分10
12秒前
房博士完成签到,获得积分10
14秒前
myl发布了新的文献求助20
14秒前
15秒前
漂亮灵阳完成签到,获得积分10
16秒前
落落完成签到,获得积分10
16秒前
科研小菜完成签到 ,获得积分10
16秒前
16秒前
16秒前
sfaaeaadefef完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890