Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis

歧管(流体力学) 磁共振弥散成像 数学 部分各向异性 标量(数学) 人工智能 欧几里得空间 欧几里德距离 计算机科学 模式识别(心理学) 算法 数学分析 几何学 磁共振成像 工程类 放射科 机械工程 医学
作者
Benoit Anctil-Robitaille,Christian Desrosiers,Hervé Lombaert
出处
期刊:Mathematics and visualization 卷期号:: 213-224 被引量:9
标识
DOI:10.1007/978-3-030-73018-5_17
摘要

Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3 \(\times \) 3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young发布了新的文献求助10
刚刚
1秒前
李亚静完成签到,获得积分10
1秒前
1秒前
1秒前
典雅芫完成签到,获得积分10
1秒前
浮游应助杨yyyy采纳,获得10
1秒前
NexusExplorer应助杨yyyy采纳,获得10
1秒前
JamesPei应助Layla采纳,获得10
1秒前
翻羽发布了新的文献求助10
2秒前
2秒前
2秒前
橘子完成签到,获得积分10
2秒前
susu完成签到,获得积分10
2秒前
活泼的石头完成签到,获得积分10
2秒前
充电宝应助随风采纳,获得10
3秒前
bkagyin应助TMAC采纳,获得10
3秒前
4秒前
loin发布了新的文献求助10
5秒前
ju00发布了新的文献求助10
5秒前
心酒为友完成签到,获得积分10
5秒前
5秒前
春日无尾熊完成签到 ,获得积分10
5秒前
JamesPei应助苗儿采纳,获得10
5秒前
甜甜一刀完成签到,获得积分10
5秒前
朴素亦绿发布了新的文献求助10
5秒前
mia完成签到,获得积分20
5秒前
6秒前
冷静宛海完成签到,获得积分10
7秒前
Foalphaz发布了新的文献求助10
7秒前
李爱国应助yangxt-iga采纳,获得10
7秒前
陈文娜发布了新的文献求助10
8秒前
淮安重午发布了新的文献求助10
8秒前
鲨鱼完成签到,获得积分10
8秒前
8秒前
8秒前
zxx完成签到,获得积分10
8秒前
9秒前
9秒前
shang发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606