Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis

歧管(流体力学) 磁共振弥散成像 数学 部分各向异性 标量(数学) 人工智能 欧几里得空间 欧几里德距离 计算机科学 模式识别(心理学) 算法 数学分析 几何学 磁共振成像 工程类 放射科 机械工程 医学
作者
Benoit Anctil-Robitaille,Christian Desrosiers,Hervé Lombaert
出处
期刊:Mathematics and visualization 卷期号:: 213-224 被引量:9
标识
DOI:10.1007/978-3-030-73018-5_17
摘要

Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3 \(\times \) 3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
英姑应助一蓑烟雨采纳,获得10
2秒前
2秒前
ding应助苔藓采纳,获得10
2秒前
3秒前
3秒前
赘婿应助热心的天玉采纳,获得10
3秒前
嘿嘿应助Sivledy采纳,获得10
4秒前
执着从灵完成签到,获得积分10
4秒前
4秒前
佳玲完成签到,获得积分10
4秒前
优雅的水晶吊灯完成签到,获得积分10
5秒前
传奇3应助tad81采纳,获得10
5秒前
向晚发布了新的文献求助10
6秒前
十年123发布了新的文献求助10
6秒前
NexusExplorer应助159采纳,获得10
6秒前
csu_zs发布了新的文献求助10
7秒前
7秒前
Molly发布了新的文献求助10
7秒前
Hey发布了新的文献求助10
8秒前
单身的翠容完成签到,获得积分10
9秒前
门门完成签到 ,获得积分10
9秒前
美丽蕨菜子应助足球采纳,获得10
11秒前
难过的慕青完成签到,获得积分10
11秒前
dax完成签到,获得积分10
11秒前
无极微光应助风中冬灵采纳,获得20
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
领导范儿应助zyc采纳,获得10
14秒前
小启发布了新的文献求助80
14秒前
14秒前
d123456完成签到,获得积分20
14秒前
14秒前
seemeflykoo完成签到 ,获得积分10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373