Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images

医学 队列 回顾性队列研究 危险系数 眼底(子宫) 接收机工作特性 置信区间 弗雷明翰风险评分 冠状动脉疾病 内科学 眼科 心脏病学 疾病
作者
Jooyoung Chang,Ahryoung Ko,Sang Min Park,Seulggie Choi,Kyuwoong Kim,Sung Min Kim,Jae Moon Yun,Ук Канг,Il Hyung Shin,Joo Young Shin,Taehoon Ko,Jinho Lee,Baek‐Lok Oh,Ki Ho Park
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:217: 121-130 被引量:88
标识
DOI:10.1016/j.ajo.2020.03.027
摘要

•Retinal fundus imaging and deep learning may be used for stratification of CVD risk. •Deep learning added predictive value compared with conventional CVD risk scoring methods. •The developed model was verified in a large cohort of 30,000 Koreans. Purpose The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study was to develop a deep learning model which predicted atherosclerosis by using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis. Design Retrospective cohort study. Methods The database at the Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained using 15,408 images to predict carotid artery atherosclerosis, which was named the deep-learning funduscopic atherosclerosis score (DL-FAS). A retrospective cohort was constructed of participants 30-80 years old who had completed elective health examinations at HPC-SNUH. Using DL-FAS as the main exposure, participants were followed for the primary outcome of death due to CVD until Dec. 31, 2017. Results For predicting carotid artery atherosclerosis among subjects, the model achieved an area under receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), accuracy, sensitivity, specificity, positive and negative predictive values of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort consisted of 32,227 participants, 78 cardiovascular disease (CVD) deaths, and 7.6-year median follow-up visits. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to those with DL-FAS <0.33 (hazard ratio: 8.33; 95% confidence interval [CI], 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. The relative integrated discrimination index was 20.45% and net reclassification index was 29.5%. Conclusions A deep learning model was developed which could predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS. The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study was to develop a deep learning model which predicted atherosclerosis by using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis. Retrospective cohort study. The database at the Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained using 15,408 images to predict carotid artery atherosclerosis, which was named the deep-learning funduscopic atherosclerosis score (DL-FAS). A retrospective cohort was constructed of participants 30-80 years old who had completed elective health examinations at HPC-SNUH. Using DL-FAS as the main exposure, participants were followed for the primary outcome of death due to CVD until Dec. 31, 2017. For predicting carotid artery atherosclerosis among subjects, the model achieved an area under receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), accuracy, sensitivity, specificity, positive and negative predictive values of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort consisted of 32,227 participants, 78 cardiovascular disease (CVD) deaths, and 7.6-year median follow-up visits. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to those with DL-FAS <0.33 (hazard ratio: 8.33; 95% confidence interval [CI], 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. The relative integrated discrimination index was 20.45% and net reclassification index was 29.5%. A deep learning model was developed which could predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脱下长衫的孔乙己完成签到,获得积分20
刚刚
1秒前
Serendipity发布了新的文献求助10
1秒前
柠檬发布了新的文献求助10
2秒前
Yuanfxz发布了新的文献求助10
2秒前
悦耳的襄发布了新的文献求助100
2秒前
peachhhh发布了新的文献求助10
2秒前
3秒前
3秒前
桐桐应助Nemo采纳,获得10
3秒前
Hello应助薇w采纳,获得10
3秒前
zgaolei完成签到,获得积分10
3秒前
轻松的囧完成签到,获得积分10
3秒前
任性映秋发布了新的文献求助10
4秒前
syjjj完成签到,获得积分10
4秒前
4秒前
4秒前
1234发布了新的文献求助10
5秒前
5秒前
wise111发布了新的文献求助10
5秒前
闪闪的白梅完成签到,获得积分10
5秒前
WWW发布了新的文献求助10
6秒前
鲜于枫完成签到,获得积分10
6秒前
干净绮山发布了新的文献求助10
6秒前
lalll发布了新的文献求助10
7秒前
ruirui发布了新的文献求助10
7秒前
xxt发布了新的文献求助10
7秒前
7秒前
8秒前
Ally发布了新的文献求助10
8秒前
9秒前
yumieer完成签到,获得积分10
10秒前
10秒前
zhq发布了新的文献求助10
11秒前
11秒前
领导范儿应助哈哈哈哈采纳,获得10
11秒前
顾矜应助Meng采纳,获得10
12秒前
soufle完成签到,获得积分10
12秒前
yan完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921