Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images

医学 队列 回顾性队列研究 眼底(子宫) 接收机工作特性 视网膜 深度学习 冠状动脉疾病 内科学 眼科 心脏病学 人工智能 计算机科学
作者
Jooyoung Chang,Ahryoung Ko,Sang Min Park,Seulggie Choi,Kyuwoong Kim,Sung Min Kim,Jae Moon Yun,Ук Канг,Il Hyung Shin,Joo Young Shin,Taehoon Ko,Jinho Lee,Baek‐Lok Oh,Ki Ho Park
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:217: 121-130 被引量:69
标识
DOI:10.1016/j.ajo.2020.03.027
摘要

•Retinal fundus imaging and deep learning may be used for stratification of CVD risk. •Deep learning added predictive value compared with conventional CVD risk scoring methods. •The developed model was verified in a large cohort of 30,000 Koreans. Purpose The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study was to develop a deep learning model which predicted atherosclerosis by using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis. Design Retrospective cohort study. Methods The database at the Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained using 15,408 images to predict carotid artery atherosclerosis, which was named the deep-learning funduscopic atherosclerosis score (DL-FAS). A retrospective cohort was constructed of participants 30-80 years old who had completed elective health examinations at HPC-SNUH. Using DL-FAS as the main exposure, participants were followed for the primary outcome of death due to CVD until Dec. 31, 2017. Results For predicting carotid artery atherosclerosis among subjects, the model achieved an area under receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), accuracy, sensitivity, specificity, positive and negative predictive values of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort consisted of 32,227 participants, 78 cardiovascular disease (CVD) deaths, and 7.6-year median follow-up visits. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to those with DL-FAS <0.33 (hazard ratio: 8.33; 95% confidence interval [CI], 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. The relative integrated discrimination index was 20.45% and net reclassification index was 29.5%. Conclusions A deep learning model was developed which could predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS. The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study was to develop a deep learning model which predicted atherosclerosis by using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis. Retrospective cohort study. The database at the Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained using 15,408 images to predict carotid artery atherosclerosis, which was named the deep-learning funduscopic atherosclerosis score (DL-FAS). A retrospective cohort was constructed of participants 30-80 years old who had completed elective health examinations at HPC-SNUH. Using DL-FAS as the main exposure, participants were followed for the primary outcome of death due to CVD until Dec. 31, 2017. For predicting carotid artery atherosclerosis among subjects, the model achieved an area under receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), accuracy, sensitivity, specificity, positive and negative predictive values of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort consisted of 32,227 participants, 78 cardiovascular disease (CVD) deaths, and 7.6-year median follow-up visits. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to those with DL-FAS <0.33 (hazard ratio: 8.33; 95% confidence interval [CI], 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. The relative integrated discrimination index was 20.45% and net reclassification index was 29.5%. A deep learning model was developed which could predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心以蓝完成签到,获得积分10
2秒前
4秒前
汉堡包应助伶俐的星月采纳,获得10
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得30
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助小白采纳,获得10
8秒前
杨仔1227完成签到,获得积分10
8秒前
Zjin宇完成签到,获得积分10
9秒前
快毕业吧完成签到,获得积分10
9秒前
yinger1984完成签到,获得积分10
10秒前
10秒前
Hung完成签到,获得积分10
12秒前
景辣条发布了新的文献求助10
12秒前
14秒前
YUJIEYA完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
以菱发布了新的文献求助10
15秒前
18秒前
ll发布了新的文献求助10
18秒前
是然宝啊发布了新的文献求助10
19秒前
19秒前
20秒前
留下就好发布了新的文献求助10
20秒前
ihuhiu完成签到,获得积分10
21秒前
21秒前
Hello应助杰尼龟采纳,获得10
21秒前
zzz完成签到,获得积分20
23秒前
科目三应助万幸鹿采纳,获得10
24秒前
25秒前
26秒前
缥缈小熊猫完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706