Mechanical properties of monolayer ternary transitional metal dichalogenides MoS2xTe2(1 − x): A molecular dynamics study

单层 材料科学 三元运算 极限抗拉强度 模数 复合材料 分子动力学 杨氏模量 脆性 变形(气象学) 结晶学 纳米技术 计算化学 化学 计算机科学 程序设计语言
作者
Penghua Ying,Jin Zhang,Zheng Zhong
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:126 (21) 被引量:11
标识
DOI:10.1063/1.5122264
摘要

In this paper, the mechanical behaviors of recently synthesized monolayer ternary transitional metal dichalogenides (TMDs) MoS2xTe2(1 − x) (0 < x < 1) under tensile loading are studied by classical molecular dynamics simulations. Particular attention is paid to the fundamental mechanical properties such as Young's modulus and fracture behaviors of monolayer MoS2xTe2(1 − x). Our results show that Young's modulus of monolayer MoS2xTe2(1 − x) remains almost unchanged when the stoichiometric coefficient x is in the range of 0–0.4 but increases apparently when x increases from 0.4 to 1. In terms of their fracture behaviors, the alloyed ternary TMDs are found to show a ductile fracture feature, which is distinctly different from the brittle fracture behavior observed in their pristine binary TMD counterparts. The ultimate strength of alloyed ternary TMDs is found to be much lower than that of the pristine binary TMDs, which is attributed to the unaccommodated deformation caused by the stress concentration between Te atoms and nearby S atoms. The influence of loading direction and temperature on the aforementioned mechanical properties is also examined. It is found that Young's modulus and the ultimate strength of monolayer MoS2xTe2(1 − x) generally decrease with increasing temperature due to the temperature-induced softening effect. In the biaxial tensile test, Young's modulus and ultimate strength are found to be isotropic. The aforementioned mechanical parameters of monolayer MoS2xTe2(1 − x) under biaxial loading are significantly smaller than those under uniaxial loading. The present work is expected to significantly expand the knowledge of the mechanics of ternary TMDs and facilitate their applications in bandgap engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林泽菲完成签到,获得积分10
刚刚
咕咕完成签到,获得积分10
刚刚
刚刚
Jasper完成签到,获得积分20
1秒前
彭于晏应助热心的血茗采纳,获得10
1秒前
调皮冰珍发布了新的文献求助10
2秒前
善良怀绿完成签到,获得积分10
3秒前
王治豪发布了新的文献求助10
3秒前
4秒前
健壮的秋寒完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
汉堡包应助秋刀鱼不过期采纳,获得10
5秒前
5秒前
美丽蕨菜子完成签到,获得积分10
6秒前
阳佟怀绿发布了新的文献求助10
6秒前
纷纷故事发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
10秒前
Sakura完成签到 ,获得积分10
10秒前
11秒前
Famiglistmo完成签到,获得积分10
11秒前
zhr发布了新的文献求助10
11秒前
zn发布了新的文献求助10
12秒前
sffsv发布了新的文献求助10
12秒前
12秒前
BowieHuang应助无情的瑾瑜采纳,获得10
12秒前
yan完成签到,获得积分10
13秒前
文献dog发布了新的文献求助10
15秒前
小肆完成签到 ,获得积分10
16秒前
17秒前
共享精神应助Asystasia7采纳,获得10
18秒前
张豪祥完成签到,获得积分20
18秒前
Ava应助sffsv采纳,获得20
18秒前
18秒前
WNL发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758