BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer

计算机科学 深度学习 人工智能 卷积神经网络 乳腺癌 模式识别(心理学) 人工神经网络 癌症 残余物 机器学习 医学 算法 内科学
作者
Mesut Toğaçar,Kutsal Baran Özkurt,Burhan Ergen,Zafer Cömert
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:545: 123592-123592 被引量:193
标识
DOI:10.1016/j.physa.2019.123592
摘要

Breast cancer is one of the most commonly diagnosed cancer types in the woman and automatically classifying breast cancer histopathological images is an important task in computer-assisted pathology analysis. Statistics indicate that the breast cancer rate is about 12% in all cancer cases in the world. Also, approximately 25% of women have breast cancer. Therefore, rapid and accurate analysis of breast cancer images is extremely important for diagnosis. Recently, deep learning models have been used in preference for this purpose. In short, the most important reason why we use a deep learning model for the diagnosis of breast cancer is can give faster and more accurate results than existing machine learning based methods. In this study, we come up with a novel deep learning model developed based on a convolutional neural network. The success of the classification was increased by using the proposed model named as BreastNet. The general structure of the BreastNet model is a residual architecture built on attention modules. Each image data is processed by the augmentation techniques before applying it as input to the model. With augmentation techniques, each image is processed one by one and transferred to BreastNet. There is no increase in the number of data. The features of each image are changed using some augmentation techniques, such as flip, shift, brightness change and rotation. Then, each image that comes to the model performs the selection and processing of important key regions of the image via through attention modules. Also, a more stable and accurate classification of the data is performed by using the hypercolumn technique in the model. Other parts of the BreastNet model consist of convolutional, pooling, residual and dense blocks. As a result, 98.80% classification success was achieved with the proposed model. The success rate of the proposed model was better than the success rates of AlexNet, VGG-16 and VGG-19 models performed on the same data set. In addition, the results obtained in this study yielded better results than the other studies that use the current BreakHis dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhha完成签到,获得积分10
1秒前
Ridley完成签到,获得积分10
1秒前
周芯旭完成签到,获得积分20
1秒前
谦让谷菱完成签到,获得积分10
2秒前
劣根发布了新的文献求助10
2秒前
fire完成签到 ,获得积分10
2秒前
椰蓉面包糠完成签到,获得积分10
3秒前
弓长完成签到,获得积分20
3秒前
毛豆妈妈发布了新的文献求助10
3秒前
WYang完成签到,获得积分10
3秒前
FashionBoy应助李大柱采纳,获得10
4秒前
化合物来完成签到,获得积分10
5秒前
Key发布了新的文献求助10
5秒前
春春发布了新的文献求助10
5秒前
5秒前
完美世界应助尹兴亮采纳,获得10
7秒前
7秒前
淡淡的豁应助innyjiang采纳,获得30
7秒前
7秒前
FashionBoy应助fanyouxin采纳,获得10
7秒前
zz完成签到,获得积分10
8秒前
huangr123完成签到 ,获得积分10
8秒前
YY发布了新的文献求助10
9秒前
李健的小迷弟应助sunc采纳,获得10
9秒前
球球了完成签到,获得积分10
9秒前
10秒前
10秒前
郭文汇发布了新的文献求助50
11秒前
shy136完成签到 ,获得积分10
11秒前
zydeco发布了新的文献求助10
12秒前
13秒前
Sunbrust完成签到,获得积分10
13秒前
小马哥完成签到,获得积分10
13秒前
顺利紫山完成签到,获得积分10
13秒前
可乐发布了新的文献求助10
13秒前
13秒前
xiaoqi666完成签到 ,获得积分10
13秒前
单薄凌蝶完成签到,获得积分10
14秒前
球球了发布了新的文献求助10
14秒前
坦率夕阳完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950238
求助须知:如何正确求助?哪些是违规求助? 3495684
关于积分的说明 11078092
捐赠科研通 3226106
什么是DOI,文献DOI怎么找? 1783479
邀请新用户注册赠送积分活动 867704
科研通“疑难数据库(出版商)”最低求助积分说明 800894