BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer

计算机科学 深度学习 人工智能 卷积神经网络 乳腺癌 模式识别(心理学) 人工神经网络 癌症 残余物 机器学习 医学 算法 内科学
作者
Mesut Toğaçar,Kutsal Baran Özkurt,Burhan Ergen,Zafer Cömert
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:545: 123592-123592 被引量:193
标识
DOI:10.1016/j.physa.2019.123592
摘要

Breast cancer is one of the most commonly diagnosed cancer types in the woman and automatically classifying breast cancer histopathological images is an important task in computer-assisted pathology analysis. Statistics indicate that the breast cancer rate is about 12% in all cancer cases in the world. Also, approximately 25% of women have breast cancer. Therefore, rapid and accurate analysis of breast cancer images is extremely important for diagnosis. Recently, deep learning models have been used in preference for this purpose. In short, the most important reason why we use a deep learning model for the diagnosis of breast cancer is can give faster and more accurate results than existing machine learning based methods. In this study, we come up with a novel deep learning model developed based on a convolutional neural network. The success of the classification was increased by using the proposed model named as BreastNet. The general structure of the BreastNet model is a residual architecture built on attention modules. Each image data is processed by the augmentation techniques before applying it as input to the model. With augmentation techniques, each image is processed one by one and transferred to BreastNet. There is no increase in the number of data. The features of each image are changed using some augmentation techniques, such as flip, shift, brightness change and rotation. Then, each image that comes to the model performs the selection and processing of important key regions of the image via through attention modules. Also, a more stable and accurate classification of the data is performed by using the hypercolumn technique in the model. Other parts of the BreastNet model consist of convolutional, pooling, residual and dense blocks. As a result, 98.80% classification success was achieved with the proposed model. The success rate of the proposed model was better than the success rates of AlexNet, VGG-16 and VGG-19 models performed on the same data set. In addition, the results obtained in this study yielded better results than the other studies that use the current BreakHis dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特乘云完成签到,获得积分10
刚刚
1秒前
LU发布了新的文献求助10
1秒前
JINWEIJIANG完成签到,获得积分10
1秒前
1秒前
搜集达人应助zeyin采纳,获得100
2秒前
3秒前
4秒前
5秒前
5秒前
晨风韵雨发布了新的文献求助10
6秒前
希希完成签到 ,获得积分10
7秒前
9秒前
vgh发布了新的文献求助10
10秒前
qqqlll完成签到 ,获得积分10
11秒前
小蘑菇应助Wency采纳,获得30
13秒前
14秒前
一蓑烟雨任平生完成签到,获得积分10
14秒前
15秒前
洋洋爱吃枣完成签到 ,获得积分10
15秒前
16秒前
毛毛雪发布了新的文献求助10
17秒前
丰D完成签到,获得积分10
17秒前
18秒前
19应助celine123采纳,获得150
18秒前
cincrady完成签到,获得积分10
18秒前
迷路曼彤完成签到 ,获得积分10
19秒前
19秒前
19秒前
Re完成签到,获得积分10
20秒前
欢城发布了新的文献求助20
20秒前
如梦如画完成签到,获得积分10
22秒前
33发布了新的文献求助30
23秒前
24秒前
默默纲发布了新的文献求助30
24秒前
seanfly发布了新的文献求助10
25秒前
26秒前
超帅柚子完成签到 ,获得积分10
27秒前
wanci应助尹博士采纳,获得10
29秒前
晨风韵雨完成签到,获得积分20
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291792
求助须知:如何正确求助?哪些是违规求助? 2928259
关于积分的说明 8436220
捐赠科研通 2600160
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642825