Comparing the Performance of an Autoregressive State-Space Approach to the Linear Regression and Artificial Neural Network for Streamflow Estimation

自回归模型 人工神经网络 水流 状态空间 线性回归 回归 估计 计量经济学 国家(计算机科学) 状态空间表示 回归分析 计算机科学 统计 人工智能 数学 工程类 地理 算法 地图学 流域 系统工程
作者
Yang Yang,Tao Huang,Yuzhi Shi,Ole Wendroth,B. Y. Liu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:8
标识
DOI:10.3808/jei.202000440
摘要

Accurate streamflow estimation remains a great challenge although diverse modeling techniques have been developed during recent decades. In contrast to the process based models, the empirical data driven methods are easy to operate, require low computing capacity and yield fairly accurate outcomes, among which the state space (STATE) approach takes use of the temporal structures inherent in streamflow series and serves as a feasible solution for streamflow estimation. Yet this method has rarely been applied, neither its comparison with other methods. The objective was to compare the performance of an autoregressive STATE approach to the traditional multiple linear regression and artificial neural network in simulating annual streamflow series of 15 catchments located in the Loess Plateau of China. Annual data of streamflow (Q), precipitation (P) and potential evapotranspiration (PET) during 1961 ~ 2013 were collected. The results show that STATE was generally the most accurate method for Q estimation, explaining almost 90% of the total variance averaged over all the 15 catchments. The estimation of streamflow relied on its own of the previous year for most catchments. Besides, the impacts of P and PET on the temporal distribution of streamflow were almost equal. Missing data were estimated using the STATE method, which allowed inter annual trend analysis of the streamflow. Significant downward trends were manifested at all the 15 catchments during the study period and the corresponding slopes ranged from 0.24 to 1.71 mm/y. These findings hold important implications for hydrological modelling and management in China's Loess Plateau and other arid and semi-arid regions

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李学文啊完成签到,获得积分10
刚刚
饱满若灵完成签到,获得积分10
1秒前
蔺不平完成签到,获得积分10
2秒前
xiao晓完成签到,获得积分10
2秒前
阳炎完成签到,获得积分10
5秒前
ymmmaomao23完成签到,获得积分10
7秒前
直率翠绿完成签到,获得积分10
7秒前
X先生完成签到 ,获得积分10
8秒前
CodeCraft应助honphyjiang采纳,获得10
8秒前
繁荣的映雁完成签到,获得积分10
8秒前
懵懂的梦秋完成签到,获得积分10
9秒前
10秒前
木宏完成签到,获得积分10
10秒前
tuzi完成签到,获得积分10
10秒前
针尖上的王子完成签到,获得积分10
11秒前
ZengJuan完成签到 ,获得积分10
12秒前
斯文的芹菜完成签到 ,获得积分10
13秒前
柳博超完成签到,获得积分10
15秒前
周周发布了新的文献求助10
15秒前
慕倾完成签到,获得积分10
16秒前
FBQZDJG2122完成签到,获得积分10
16秒前
zpj完成签到 ,获得积分10
16秒前
hyjcnhyj完成签到,获得积分10
17秒前
科研通AI2S应助Jenny采纳,获得10
17秒前
18秒前
加油少年完成签到,获得积分10
18秒前
19秒前
倪小呆完成签到 ,获得积分10
19秒前
21秒前
ghost202发布了新的文献求助10
21秒前
欣慰的舞仙完成签到,获得积分10
21秒前
顺利的绿柏完成签到,获得积分10
24秒前
NexusExplorer应助泥巴采纳,获得10
25秒前
26秒前
26秒前
搜集达人应助DTBTY采纳,获得10
26秒前
张贵超发布了新的文献求助10
27秒前
27秒前
时光倒流的鱼完成签到,获得积分10
27秒前
和谐的醉山完成签到,获得积分10
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477528
求助须知:如何正确求助?哪些是违规求助? 3068967
关于积分的说明 9110472
捐赠科研通 2760481
什么是DOI,文献DOI怎么找? 1514959
邀请新用户注册赠送积分活动 700503
科研通“疑难数据库(出版商)”最低求助积分说明 699631