Si dry etching for TSV formation and backside reveal

深反应离子刻蚀 薄脆饼 材料科学 钝化 蚀刻(微加工) 反应离子刻蚀 光电子学 制作 通过硅通孔 纳米技术 图层(电子) 医学 病理 替代医学
作者
Z. Wang,Feng Jiang,W. Q. Zhang
标识
DOI:10.1109/estc.2014.6962840
摘要

In 3D IC packaging, through silicon via (TSV) technology is being considered as a promising technology, enabling massive and short interconnections between stacked chips, increasing performance and data bandwidth, and reducing signal delay and the power consumption. Currently, dry etch process plays an important role in TSV fabrication. TSVs with diameters ranging from one hundred to ten micrometers are mainly fabricated by deep reactive ion etching (DRIE) technology. Bosch process is used for DRIE process for producing high-aspect ratio TSVs and non-Bosch process is used for TSV reveal process. In Bosch process, the primary steps are silicon isotropic etching and wall passivation in sequential cycles. SF6 is widely used as the main etching gas for the high density of F+ radicals; C4F8 is used in wall passivation as it polymerizes to deposits on walls to form an etch barrier that is sufficiently impervious to side scattered F+ ions but not to direct ions at the bottom of the via. Wall scalloping occurs primarily near the top of the via where scattered ions have wide trajectories and less at greater depths where ion trajectories are more restricted. After completion of the via-middle TSV integration and front-side wafer processing, the wafer is temporarily bonded onto a carrier wafer which could be glass or silicon. Then Si from the backside of the wafer was removed to make contact with the bottom of the TSVs by a mechanical grind followed by a reveal etch, which is a key step for the successful implementation of TSV. The via reveal was required to maintain acceptably low total thickness variation (TTV) to allow subsequent stacking steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
请叫我风吹麦浪应助卡卡采纳,获得10
刚刚
传奇3应助起司嗯采纳,获得10
1秒前
remimazolam发布了新的文献求助10
2秒前
在水一方应助悦耳寒松采纳,获得10
2秒前
满座完成签到,获得积分10
2秒前
科研通AI2S应助coffee采纳,获得10
2秒前
3秒前
雪山飞龙发布了新的文献求助30
3秒前
科研通AI5应助phd采纳,获得10
4秒前
善学以致用应助京阿尼采纳,获得10
4秒前
Sylvia完成签到,获得积分10
4秒前
朴素的鸡发布了新的文献求助10
4秒前
SCI发布了新的文献求助10
4秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
5秒前
Enoch完成签到,获得积分10
5秒前
Sara完成签到,获得积分10
5秒前
5秒前
zhuzhu发布了新的文献求助20
5秒前
YUZU发布了新的文献求助10
6秒前
6秒前
7秒前
shirleeyeahe完成签到,获得积分10
8秒前
8秒前
特特雷珀萨努完成签到 ,获得积分10
8秒前
京阿尼完成签到,获得积分10
8秒前
风雨发布了新的文献求助10
8秒前
orixero应助今非采纳,获得10
8秒前
平常的G完成签到,获得积分10
9秒前
9秒前
小石头完成签到,获得积分10
10秒前
10秒前
YL完成签到 ,获得积分10
10秒前
10秒前
上官若男应助整齐路灯采纳,获得10
10秒前
yyj发布了新的文献求助10
10秒前
细腻的麦片完成签到,获得积分20
11秒前
11秒前
君君完成签到,获得积分10
12秒前
cchen0902完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794