纳米发生器
摩擦电效应
材料科学
电极
光电子学
能量收集
电压
电极阵列
压电
电气工程
复合材料
功率(物理)
物理
工程类
物理化学
化学
量子力学
作者
Ya Yang,Hulin Zhang,Jun Chen,Qingshen Jing,Yusheng Zhou,Xiaonan Wen,Zhong Lin Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2013-07-24
卷期号:7 (8): 7342-7351
被引量:554
摘要
We report a single-electrode-based sliding-mode triboelectric nanogenerator (TENG) that not only can harvest mechanical energy but also is a self-powered displacement vector sensor system for touching pad technology. By utilizing the relative sliding between an electrodeless polytetrafluoroethylene (PTFE) patch with surface-etched nanoparticles and an Al electrode that is grounded, the fabricated TENG can produce an open-circuit voltage up to 1100 V, a short-circuit current density of 6 mA/m2, and a maximum power density of 350 mW/m2 on a load of 100 MΩ, which can be used to instantaneously drive 100 green-light-emitting diodes (LEDs). The working mechanism of the TENG is based on the charge transfer between the Al electrode and the ground by modulating the relative sliding distance between the tribo-charged PTFE patch and the Al plate. Grating of linear rows on the Al electrode enables the detection of the sliding speed of the PTFE patch along one direction. Moreover, we demonstrated that 16 Al electrode channels arranged along four directions were used to monitor the displacement (the direction and the location) of the PTFE patch at the center, where the output voltage signals in the 16 channels were recorded in real-time to form a mapping figure. The advantage of this design is that it only requires the bottom Al electrode to be grounded and the top PTFE patch needs no electrical contact, which is beneficial for energy harvesting in automobile rotation mode and touch pad applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI