介孔材料
锐钛矿
光催化
金红石
化学
化学工程
催化作用
介孔有机硅
氢
纳米技术
材料科学
介孔二氧化硅
有机化学
工程类
作者
Wei Zhou,Wei Li,Jian‐Qiang Wang,Yang Qu,Ying Yang,Ying Xie,Kaifu Zhang,Lei Wang,Honggang Fu,Dongyuan Zhao
摘要
Mesoporous TiO2 has gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Herein, we report the facile synthesis of ordered mesoporous black TiO2 (OMBT) materials, which exhibit excellent photocatalytic hydrogen evolution performances. In this case, the employment of a thermally stable and high-surface-area mesoporous TiO2 as the hydrogenation precursor is the key for fabricating the OMBT materials, which not only facilitate H2 gas diffusion into TiO2 and interaction with their structures but also maintain the ordered mesoporous structures as well as inhibit the phase transformation (from anatase to rutile) and crystal growth during hydrogenation at 500 °C. The resultant OMBT materials possess a relatively high surface area of ∼124 m(2) g(-1) and a large pore size and pore volume of ∼9.6 nm and 0.24 cm(3) g(-1), respectively. More importantly, the OMBT materials can extend the photoresponse from ultraviolet to visible and infrared light regions and exhibit a high solar-driven hydrogen production rate (136.2 μmol h(-1)), which is almost two times as high as that of pristine mesoporous TiO2 (76.6 μmol h(-1)).
科研通智能强力驱动
Strongly Powered by AbleSci AI