Ballistic high-energy trauma has substantially increased the severity of non-fatal extremity injuries incurred in modern warfare. Expedient medical care, refinement in surgical techniques, and soft tissue coverage have brought about a paradigm shift in the management of lower extremity wounds during the last decade with an increased emphasis on limb salvage. A literature-based study was conducted to analyze reconstructive modalities based on the location, depth, and severity of wounds, as well as mechanism of injury, concomitant vascular injuries and open fractures, choice of flap, timing of definitive reconstruction, and complications. Extremity injuries account for over 60 % of injuries in the recent conflicts in Iraq and Afghanistan, with the majority secondary to explosive devices. The severity of these injuries is profound compared with civilian registries, and conventional injury scoring systems have failed to accurately predict outcomes in combat trauma. The mainstay of treatment is serial debridement, negative pressure therapy, fracture stabilization, and treatment of concomitant injuries by the forward medical teams with subsequent definitive reconstruction after transport to an advanced military treatment facility. Autologous reconstruction with free tissue transfer and pedicled flaps remains the primary modality for soft tissue coverage in limb salvage. Adjunct innovative modalities, such as external tissue expansion, dermal substitutes, and regenerative matrices, have also been successfully utilized for limb salvage. Lower extremity injuries account for the vast majority of injuries in modern warzones. Explosive devices represent the most common mechanism of injury, with blast impact leading to extensive soft tissue injuries necessitating complex reconstructive strategies. Serial debridement, negative pressure therapy, and autologous reconstruction with free tissue transfer and pedicled flaps remain the mainstay of treatment in recent conflicts.