单细胞分析
一次性使用
单核苷酸多态性
计算生物学
核苷酸
生物
遗传学
基因
细胞
基因型
工程类
工艺工程
作者
Hamim Zafar,Yong Wang,Luay Nakhleh,Nicholas Navin,Ken Chen
出处
期刊:Nature Methods
[Springer Nature]
日期:2016-04-18
卷期号:13 (6): 505-507
被引量:164
摘要
Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI