效应器
抗体
抗原
免疫系统
细胞生物学
生物
抗体调理
碎片结晶区
抗体依赖性细胞介导的细胞毒性
免疫球蛋白G
免疫学
化学
分子生物学
单克隆抗体
调理素
作者
Yariv Mazor,Chunning Yang,M. Jack Borrok,Joanne Ayriss,Karen Aherne,Herren Wu,William F. Dall’Acqua
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2016-06-20
卷期号:11 (6): e0157788-e0157788
被引量:30
标识
DOI:10.1371/journal.pone.0157788
摘要
Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI