独特性
次导数
粘弹性
数学证明
数学
期限(时间)
边值问题
本构方程
流离失所(心理学)
位移场
数学分析
边界(拓扑)
牙石(牙科)
应用数学
材料科学
物理
几何学
结构工程
工程类
有限元法
复合材料
正多边形
凸优化
牙科
医学
心理治疗师
量子力学
心理学
作者
Stanisław Migórski,Anna Ochał,Mircea Sofonea
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2011-01-01
卷期号:15 (3): 687-705
被引量:17
标识
DOI:10.3934/dcdsb.2011.15.687
摘要
We consider a mathematical model whichdescribes the frictional contact between a deformable body and afoundation. The process is time-dependent, the material behavioris described with a viscoelastic constitutive law with long memoryand the contact is modeled with subdifferential boundaryconditions. We derive the variational formulation of the problemwhich is of the form of a hemivariational inequality with Volterraintegral term for the displacement field. Then we prove existenceand uniqueness results in the study of abstract inclusions as wellas in the study of abstract hemivariational inequalities withVolterra integral term. The proofs are based on arguments onpseudomonotone operators, compactness and fixed point. We use theabstract results to prove the unique solvability of the frictionalcontact problem. Finally, we present examples of contact andfrictional boundary conditions for which our results work.
科研通智能强力驱动
Strongly Powered by AbleSci AI