Estimating the mean and variance from the median, range, and the size of a sample

标准差 样本量测定 统计 估计员 差异(会计) 航程(航空) 数学 合并方差 样本均值和样本协方差 样本方差 置信区间 标准误差 材料科学 会计 业务 复合材料
作者
Stela Pudar Hozo,Benjamin Djulbegović,Iztok Hozo
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:5 (1) 被引量:6834
标识
DOI:10.1186/1471-2288-5-13
摘要

Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial. In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data. We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n ≤ 15). For moderately sized samples (15 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy. Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
breaddog完成签到,获得积分10
刚刚
1秒前
毋宁发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
温超完成签到,获得积分10
5秒前
Owen应助diee采纳,获得10
5秒前
小松鼠发布了新的文献求助10
5秒前
6秒前
新晋学术小生完成签到 ,获得积分10
6秒前
哈哈完成签到,获得积分10
7秒前
7秒前
sobergod完成签到 ,获得积分10
8秒前
gghoubj发布了新的文献求助10
8秒前
9秒前
小洛发布了新的文献求助10
9秒前
Bo发布了新的文献求助10
9秒前
boom发布了新的文献求助10
9秒前
10秒前
黒面包发布了新的文献求助10
11秒前
Starry发布了新的文献求助10
11秒前
Cambridge发布了新的文献求助10
11秒前
永远少年完成签到,获得积分10
12秒前
幸福大白发布了新的文献求助10
12秒前
12秒前
秋秋糖xte完成签到,获得积分10
13秒前
嘉禾瑶发布了新的文献求助10
13秒前
goddd发布了新的文献求助10
13秒前
NexusExplorer应助guoer采纳,获得10
14秒前
14秒前
14秒前
诚心逊发布了新的文献求助10
16秒前
文献狂人发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
qipilang100完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849