计算机科学
领域知识
大数据
知识工程
数据科学
知识抽取
知识获取
知识整合
基于知识的系统
知识表示与推理
推论
开放式知识库连接
领域(数学分析)
知识管理
主题专家
人工智能
专家系统
个人知识管理
数据挖掘
组织学习
数学分析
数学
作者
Xindong Wu,Huanhuan Chen,Gongqing Wu,Jun Liu,Qinghua Zheng,Xiaofeng He,Aoying Zhou,Zhong‐Qiu Zhao,Bifan Wei,Yang Li,Qiping Zhang,Shichao Zhang
出处
期刊:IEEE Intelligent Systems
[Institute of Electrical and Electronics Engineers]
日期:2015-07-13
卷期号:30 (5): 46-55
被引量:71
摘要
In the era of big data, knowledge engineering faces fundamental challenges induced by fragmented knowledge from heterogeneous, autonomous sources with complex and evolving relationships. The knowledge representation, acquisition, and inference techniques developed in the 1970s and 1980s, driven by research and development of expert systems, must be updated to cope with both fragmented knowledge from multiple sources in the big data revolution and in-depth knowledge from domain experts. This article presents BigKE, a knowledge engineering framework that handles fragmented knowledge modeling and online learning from multiple information sources, nonlinear fusion on fragmented knowledge, and automated demand-driven knowledge navigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI