Cone-beam x-ray luminescence computed tomography reconstruction from single-view based on total variance

反问题 投影(关系代数) 光学 迭代重建 成像体模 物理 图像质量 断层摄影术 人工智能 计算机科学 数学 算法 图像(数学) 数学分析
作者
Tianshuai Liu,Junyan Rong,Peng Gao,Liang Zhang,Wenli Zhang,Yuanke Zhang,Hongbing Lu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 被引量:1
标识
DOI:10.1117/12.2293221
摘要

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Fast three-dimensional (3-D) CB-XLCT imaging has attracted significant attention for the application of XLCT in fast dynamic imaging study. Currently, due to the short data collection time, single-view CB-XLCT imaging achieves fast resolving the three-dimensional (3-D) distribution of X-ray-excitable nanoparticles. However, owing to only one angle projection data is used in the reconstruction, the single-view CB-XLCT inverse problem is inherently ill-conditioned, which makes image reconstruction highly susceptible to the effects of noise and numerical errors. To solve the ill-posed inverse problem, using the sparseness of the X-ray-excitable nanoparticles distribution as the prior, a new reconstruction approach based on total variance is proposed in this study. To evaluate the performance of the proposed approach, a phantom experiment was performed based on a CB-XLCT imaging system. The experiments indicate that the reconstruction from single-view XCLT can provide satisfactory results based on the proposed approach. In conclusion, with the reconstruction approach based on total variance, we implement a fast XLCT reconstruction of high quality with only one angle projection data used, which would be helpful for fast dynamic imaging study. In future, we will focus on how to applying the proposed TV-based reconstruction method and CB-XLCT imaging system to image fast biological distributions of the X-ray excitable nanophosphors in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光青烟发布了新的文献求助10
1秒前
林小雨完成签到,获得积分10
2秒前
miku1完成签到,获得积分10
3秒前
慕青应助豆大福采纳,获得10
4秒前
5秒前
6秒前
nixx给nixx的求助进行了留言
7秒前
充电宝应助苹果路人采纳,获得10
12秒前
慕青应助夏荧荧采纳,获得10
14秒前
一只好果子完成签到,获得积分20
16秒前
风起怨天寒完成签到 ,获得积分10
16秒前
win发布了新的文献求助10
17秒前
leekle完成签到,获得积分10
19秒前
梦见了一只电子猪完成签到 ,获得积分10
19秒前
无私小小完成签到 ,获得积分10
19秒前
大聪明关注了科研通微信公众号
21秒前
小熊完成签到,获得积分10
22秒前
HuiHui完成签到,获得积分10
23秒前
勤奋颜演发布了新的文献求助10
23秒前
wmufwd完成签到,获得积分10
23秒前
张萌完成签到 ,获得积分10
23秒前
撒大苏打完成签到,获得积分10
23秒前
所所应助a远离霓虹采纳,获得10
25秒前
Yoin完成签到,获得积分10
25秒前
柏林发布了新的文献求助10
26秒前
Yooki完成签到,获得积分10
26秒前
黄橙子完成签到 ,获得积分10
26秒前
花花完成签到,获得积分10
27秒前
扒开皮皮完成签到,获得积分10
27秒前
三磷酸腺苷完成签到 ,获得积分10
27秒前
老实的石头完成签到,获得积分10
28秒前
吹雪完成签到,获得积分0
30秒前
凌忆文完成签到 ,获得积分0
30秒前
30秒前
啊凡完成签到 ,获得积分10
30秒前
31秒前
34秒前
34秒前
荔枝多酚完成签到,获得积分10
34秒前
陈永伟发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175