清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cone-beam x-ray luminescence computed tomography reconstruction from single-view based on total variance

反问题 投影(关系代数) 光学 迭代重建 成像体模 物理 图像质量 断层摄影术 人工智能 计算机科学 数学 算法 图像(数学) 数学分析
作者
Tianshuai Liu,Junyan Rong,Peng Gao,Liang Zhang,Wenli Zhang,Yuanke Zhang,Hongbing Lu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 被引量:1
标识
DOI:10.1117/12.2293221
摘要

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Fast three-dimensional (3-D) CB-XLCT imaging has attracted significant attention for the application of XLCT in fast dynamic imaging study. Currently, due to the short data collection time, single-view CB-XLCT imaging achieves fast resolving the three-dimensional (3-D) distribution of X-ray-excitable nanoparticles. However, owing to only one angle projection data is used in the reconstruction, the single-view CB-XLCT inverse problem is inherently ill-conditioned, which makes image reconstruction highly susceptible to the effects of noise and numerical errors. To solve the ill-posed inverse problem, using the sparseness of the X-ray-excitable nanoparticles distribution as the prior, a new reconstruction approach based on total variance is proposed in this study. To evaluate the performance of the proposed approach, a phantom experiment was performed based on a CB-XLCT imaging system. The experiments indicate that the reconstruction from single-view XCLT can provide satisfactory results based on the proposed approach. In conclusion, with the reconstruction approach based on total variance, we implement a fast XLCT reconstruction of high quality with only one angle projection data used, which would be helpful for fast dynamic imaging study. In future, we will focus on how to applying the proposed TV-based reconstruction method and CB-XLCT imaging system to image fast biological distributions of the X-ray excitable nanophosphors in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范ER完成签到 ,获得积分10
41秒前
herpes完成签到 ,获得积分0
43秒前
脑洞疼应助渣渣采纳,获得10
51秒前
1分钟前
YifanWang完成签到,获得积分0
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
貔貅完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
John完成签到,获得积分10
3分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
3分钟前
muriel完成签到,获得积分0
3分钟前
如歌完成签到,获得积分10
3分钟前
jeronimo完成签到,获得积分10
3分钟前
3分钟前
4分钟前
Chonger发布了新的文献求助10
4分钟前
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
Square完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
silence完成签到,获得积分10
6分钟前
西西娃儿发布了新的文献求助10
6分钟前
温柔冰岚完成签到 ,获得积分10
6分钟前
西西娃儿发布了新的文献求助10
6分钟前
6分钟前
6分钟前
一盏壶完成签到,获得积分10
6分钟前
6分钟前
渣渣完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293133
求助须知:如何正确求助?哪些是违规求助? 4443412
关于积分的说明 13831150
捐赠科研通 4326975
什么是DOI,文献DOI怎么找? 2375214
邀请新用户注册赠送积分活动 1370555
关于科研通互助平台的介绍 1335258