Edge-guided generative adversarial network for image inpainting

修补 生成语法 图像(数学) GSM演进的增强数据速率 计算机科学 人工智能 生成对抗网络 对抗制 面子(社会学概念) 计算机视觉 钥匙(锁) 图像复原 模式识别(心理学) 图像处理 计算机安全 社会科学 社会学
作者
Shunxin Xu,Dong Liu,Zhiwei Xiong
标识
DOI:10.1109/vcip.2017.8305138
摘要

In this paper, we present an edge-guided generative adversarial network (EGGAN) for edge-based image inpainting that can be adopted in image compression and transmission error concealment. Our key idea is to integrate edges into the generative network, and train the generative network to minimize both gradient loss and adversarial loss. Given a corrupted image and the estimated edges of the missing area, the trained generative network is capable in generating the missing area in a visually plausible manner, and meanwhile reproducing the given edges faithfully. Experimental results on the challenging face images have shown the effectiveness of EGGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的野狼完成签到,获得积分10
刚刚
穴居人完成签到,获得积分10
刚刚
充电宝应助福娃采纳,获得10
刚刚
刚刚
小黄应助学术蠕虫采纳,获得10
1秒前
1秒前
Orange应助自觉的小蝴蝶采纳,获得10
2秒前
2秒前
哲999发布了新的文献求助10
2秒前
xiaohu完成签到,获得积分10
3秒前
文艺的毛巾完成签到,获得积分20
3秒前
3秒前
勤快浣熊完成签到 ,获得积分10
3秒前
听风完成签到 ,获得积分10
3秒前
糖果苏扬完成签到 ,获得积分10
4秒前
jasmineee完成签到,获得积分10
4秒前
lurenjia009发布了新的文献求助10
4秒前
Orange应助小橙子采纳,获得10
4秒前
iiing完成签到 ,获得积分10
5秒前
想跟这个世界讲个道理完成签到,获得积分10
5秒前
5秒前
5秒前
Eva发布了新的文献求助10
6秒前
张有志应助本杰明采纳,获得30
6秒前
Dandelion完成签到,获得积分10
6秒前
完美世界应助葛辉辉采纳,获得10
7秒前
龙泉完成签到 ,获得积分10
7秒前
Khr1stINK发布了新的文献求助20
7秒前
美女发布了新的文献求助10
7秒前
汉堡包应助烫嘴普通话采纳,获得10
7秒前
长颈鹿完成签到,获得积分10
9秒前
Koi完成签到,获得积分10
9秒前
打卤完成签到,获得积分10
9秒前
CodeCraft应助Intro采纳,获得10
10秒前
SciGPT应助cat采纳,获得10
10秒前
Minkslion发布了新的文献求助10
10秒前
11秒前
酷波er应助细腻的麦片采纳,获得10
12秒前
lurenjia009完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762