Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model

颜色恒定性 人工智能 计算机视觉 计算机科学 忠诚 全局照明 正规化(语言学) 噪音(视频) 降噪 图像(数学) 渲染(计算机图形) 电信
作者
Mading Li,Jiaying Liu,Wenhan Yang,Xiaoyan Sun,Zongming Guo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2828-2841 被引量:945
标识
DOI:10.1109/tip.2018.2810539
摘要

Low-light image enhancement methods based on classic Retinex model attempt to manipulate the estimated illumination and to project it back to the corresponding reflectance. However, the model does not consider the noise, which inevitably exists in images captured in low-light conditions. In this paper, we propose the robust Retinex model, which additionally considers a noise map compared with the conventional Retinex model, to improve the performance of enhancing low-light images accompanied by intensive noise. Based on the robust Retinex model, we present an optimization function that includes novel regularization terms for the illumination and reflectance. Specifically, we use norm to constrain the piece-wise smoothness of the illumination, adopt a fidelity term for gradients of the reflectance to reveal the structure details in low-light images, and make the first attempt to estimate a noise map out of the robust Retinex model. To effectively solve the optimization problem, we provide an augmented Lagrange multiplier based alternating direction minimization algorithm without logarithmic transformation. Experimental results demonstrate the effectiveness of the proposed method in low-light image enhancement. In addition, the proposed method can be generalized to handle a series of similar problems, such as the image enhancement for underwater or remote sensing and in hazy or dusty conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康发布了新的文献求助10
刚刚
yyyalles应助开朗可行采纳,获得10
刚刚
1秒前
4秒前
4秒前
奋斗大象完成签到,获得积分10
6秒前
KSAcc发布了新的文献求助20
6秒前
深情安青应助文耳东采纳,获得10
6秒前
7秒前
柯一一应助More采纳,获得10
7秒前
平淡汽车发布了新的文献求助10
7秒前
宋宇骐完成签到,获得积分10
7秒前
djy发布了新的文献求助10
8秒前
笑点低的达完成签到 ,获得积分10
8秒前
fool完成签到,获得积分10
9秒前
康康完成签到,获得积分20
9秒前
核桃核桃发布了新的文献求助10
9秒前
siriuslee99完成签到,获得积分10
10秒前
y741应助未来的闫院士采纳,获得10
11秒前
zz完成签到,获得积分10
12秒前
空空伊完成签到,获得积分10
12秒前
英俊的铭应助大意的茈采纳,获得10
12秒前
lonely完成签到,获得积分10
12秒前
可爱的函函应助vict采纳,获得10
14秒前
14秒前
14秒前
wind应助赵欣月采纳,获得10
15秒前
Akim应助阿飞采纳,获得10
16秒前
Hello应助成就的香彤采纳,获得10
17秒前
123发布了新的文献求助10
18秒前
19秒前
文耳东发布了新的文献求助10
20秒前
20秒前
20秒前
眼睛大的新晴完成签到,获得积分10
22秒前
Zhang发布了新的文献求助10
23秒前
淡淡代玉发布了新的文献求助10
24秒前
芭娜55发布了新的文献求助50
24秒前
wwk发布了新的文献求助10
24秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577