Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm

方位(导航) 灵敏度(控制系统) 多目标优化 分类 遗传算法 点(几何) 数学优化 计算机科学 结构工程 工程类 数学 算法 几何学 电子工程 人工智能
作者
Ashish Jat,Rajiv Tiwari
出处
期刊:Journal of King Saud University: Engineering Sciences [Elsevier]
卷期号:32 (1): 58-68 被引量:14
标识
DOI:10.1016/j.jksues.2018.03.002
摘要

In Spherical Roller Bearings (SRBs) design the fatigue and wear lives are the most important factors. The fatigue life of bearing is connected to dynamic capacity (Cd) and wear life of bearing is linked with the elasto-hydrodynamic minimum film thickness (hmin). Multi-objective optimization (MOO) of SRBs has been considered in the present study. For SRBs optimization problem, two objectives (Cd and hmin), eight design variables, and twenty-two constraints have been considered. Bearing pitch diameter, roller diameter, number of rollers, effective roller length and the contact angle are five design geometrical variables and other three are constraint parameters. Objective functions have been optimized individually as well as simultaneously. Elitist Non Dominated Sorting Genetic Algorithm (NSGA-II) is used to solve a non-linear constrained optimization problem of the SRB design. A convergence methodology is performed to the bearing design for global optimum results. Results obtained from NSGA-II runs of MOO have been used to draw Pareto-optimal fronts (POFs). Optimum bearing dimensions are selected by considering the knee-point solution on the POFs. Results indicate that the dynamic capacity of optimized bearing got enhanced thus increase in life of the bearing. A sensitivity analysis is conducted to identify the sensitivity of objective functions with design variables. The sensitivity analysis plays an important part in deciding the tolerances, which can be provided to design variables for the manufacturing of optimized bearings. The results obtained from MOO problem have been compared with available literature and are found to be better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
胡可完成签到 ,获得积分10
2秒前
lifenghou完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
17秒前
fdpb完成签到,获得积分10
19秒前
奇奇怪怪的大鱼完成签到,获得积分10
21秒前
zcydbttj2011完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
董耀文完成签到,获得积分10
25秒前
pliciyir完成签到 ,获得积分10
26秒前
出厂价完成签到,获得积分10
26秒前
Shaohan完成签到,获得积分10
28秒前
王继完成签到,获得积分10
28秒前
合适鲂完成签到,获得积分10
32秒前
卡卡西完成签到,获得积分10
32秒前
Yi完成签到,获得积分10
32秒前
背后如之完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
simon666完成签到,获得积分10
35秒前
maybe完成签到,获得积分10
35秒前
卡片完成签到,获得积分10
35秒前
MaxwellZH完成签到,获得积分10
36秒前
愤怒的水绿完成签到,获得积分10
39秒前
hahaha6789y完成签到,获得积分10
39秒前
junzzz完成签到 ,获得积分10
39秒前
霡霂完成签到,获得积分10
39秒前
BlueKitty完成签到,获得积分10
40秒前
Walton完成签到,获得积分10
41秒前
cl完成签到,获得积分10
41秒前
sheep完成签到,获得积分10
41秒前
Bake完成签到 ,获得积分10
41秒前
surlamper完成签到,获得积分10
42秒前
Mo完成签到,获得积分10
42秒前
hahaha2完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
42秒前
婉枫完成签到,获得积分10
43秒前
徐彬荣完成签到,获得积分10
43秒前
往昔不过微澜完成签到,获得积分10
43秒前
spider534完成签到,获得积分10
44秒前
好好应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797