已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm

方位(导航) 灵敏度(控制系统) 多目标优化 分类 遗传算法 点(几何) 数学优化 计算机科学 结构工程 工程类 数学 算法 几何学 电子工程 人工智能
作者
Ashish Jat,Rajiv Tiwari
出处
期刊:Journal of King Saud University: Engineering Sciences [Elsevier]
卷期号:32 (1): 58-68 被引量:14
标识
DOI:10.1016/j.jksues.2018.03.002
摘要

In Spherical Roller Bearings (SRBs) design the fatigue and wear lives are the most important factors. The fatigue life of bearing is connected to dynamic capacity (Cd) and wear life of bearing is linked with the elasto-hydrodynamic minimum film thickness (hmin). Multi-objective optimization (MOO) of SRBs has been considered in the present study. For SRBs optimization problem, two objectives (Cd and hmin), eight design variables, and twenty-two constraints have been considered. Bearing pitch diameter, roller diameter, number of rollers, effective roller length and the contact angle are five design geometrical variables and other three are constraint parameters. Objective functions have been optimized individually as well as simultaneously. Elitist Non Dominated Sorting Genetic Algorithm (NSGA-II) is used to solve a non-linear constrained optimization problem of the SRB design. A convergence methodology is performed to the bearing design for global optimum results. Results obtained from NSGA-II runs of MOO have been used to draw Pareto-optimal fronts (POFs). Optimum bearing dimensions are selected by considering the knee-point solution on the POFs. Results indicate that the dynamic capacity of optimized bearing got enhanced thus increase in life of the bearing. A sensitivity analysis is conducted to identify the sensitivity of objective functions with design variables. The sensitivity analysis plays an important part in deciding the tolerances, which can be provided to design variables for the manufacturing of optimized bearings. The results obtained from MOO problem have been compared with available literature and are found to be better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助marcg4采纳,获得10
刚刚
在水一方应助过时的笙采纳,获得10
1秒前
杨东旭完成签到,获得积分20
1秒前
2秒前
谐音梗别扣钱完成签到 ,获得积分10
3秒前
qingmoheng应助Chat采纳,获得10
3秒前
SciKid524完成签到 ,获得积分10
4秒前
agf发布了新的文献求助30
4秒前
铭铭完成签到 ,获得积分10
4秒前
Frog完成签到,获得积分10
5秒前
杨东旭发布了新的文献求助10
5秒前
逮劳完成签到 ,获得积分10
5秒前
cc完成签到 ,获得积分10
5秒前
Owen应助juqiu采纳,获得10
7秒前
酷波er应助juqiu采纳,获得10
7秒前
烟花应助juqiu采纳,获得10
8秒前
一只西瓜茶完成签到,获得积分20
8秒前
充电宝应助无奈曼云采纳,获得10
10秒前
脱锦涛完成签到 ,获得积分10
11秒前
领导范儿应助Frog采纳,获得10
13秒前
15秒前
nnmmuu完成签到,获得积分10
15秒前
浮浮世世完成签到,获得积分10
16秒前
Jim完成签到,获得积分10
17秒前
十一完成签到 ,获得积分10
19秒前
丰富的谷菱完成签到,获得积分10
20秒前
xyyyy完成签到 ,获得积分10
20秒前
池木完成签到 ,获得积分10
20秒前
利好完成签到 ,获得积分10
21秒前
不学习的牛蛙完成签到 ,获得积分10
22秒前
NexusExplorer应助GQ采纳,获得10
23秒前
23秒前
于涵艺完成签到,获得积分10
26秒前
27秒前
无知者海生完成签到 ,获得积分10
27秒前
28秒前
28秒前
飞快的孱完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587212
关于积分的说明 14413030
捐赠科研通 4518471
什么是DOI,文献DOI怎么找? 2475801
邀请新用户注册赠送积分活动 1461397
关于科研通互助平台的介绍 1434283