Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm

方位(导航) 灵敏度(控制系统) 多目标优化 分类 遗传算法 点(几何) 数学优化 计算机科学 结构工程 工程类 数学 算法 几何学 电子工程 人工智能
作者
Ashish Jat,Rajiv Tiwari
出处
期刊:Journal of King Saud University: Engineering Sciences [Elsevier]
卷期号:32 (1): 58-68 被引量:14
标识
DOI:10.1016/j.jksues.2018.03.002
摘要

In Spherical Roller Bearings (SRBs) design the fatigue and wear lives are the most important factors. The fatigue life of bearing is connected to dynamic capacity (Cd) and wear life of bearing is linked with the elasto-hydrodynamic minimum film thickness (hmin). Multi-objective optimization (MOO) of SRBs has been considered in the present study. For SRBs optimization problem, two objectives (Cd and hmin), eight design variables, and twenty-two constraints have been considered. Bearing pitch diameter, roller diameter, number of rollers, effective roller length and the contact angle are five design geometrical variables and other three are constraint parameters. Objective functions have been optimized individually as well as simultaneously. Elitist Non Dominated Sorting Genetic Algorithm (NSGA-II) is used to solve a non-linear constrained optimization problem of the SRB design. A convergence methodology is performed to the bearing design for global optimum results. Results obtained from NSGA-II runs of MOO have been used to draw Pareto-optimal fronts (POFs). Optimum bearing dimensions are selected by considering the knee-point solution on the POFs. Results indicate that the dynamic capacity of optimized bearing got enhanced thus increase in life of the bearing. A sensitivity analysis is conducted to identify the sensitivity of objective functions with design variables. The sensitivity analysis plays an important part in deciding the tolerances, which can be provided to design variables for the manufacturing of optimized bearings. The results obtained from MOO problem have been compared with available literature and are found to be better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的斑马完成签到,获得积分10
刚刚
疯少完成签到,获得积分20
刚刚
爱笑的蘑菇完成签到,获得积分10
刚刚
nangongqiu发布了新的文献求助10
刚刚
SunnyHayes完成签到,获得积分10
1秒前
平常的路人完成签到,获得积分10
2秒前
李半斤完成签到,获得积分10
2秒前
Aurinse完成签到,获得积分10
2秒前
2秒前
李健应助开心potato采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研通AI2S应助happily遇采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
4秒前
望北楼主完成签到,获得积分10
4秒前
烂漫的皮带完成签到,获得积分10
4秒前
浮躁的大孩子完成签到 ,获得积分10
5秒前
KiKU发布了新的文献求助10
5秒前
jojo完成签到 ,获得积分10
6秒前
蓝颜发布了新的文献求助10
6秒前
科目三应助AKYDXS采纳,获得10
6秒前
吴逸峰发布了新的文献求助10
7秒前
沉吟至今发布了新的文献求助20
7秒前
7秒前
wenchong完成签到,获得积分10
7秒前
cc完成签到 ,获得积分10
7秒前
简单花花完成签到,获得积分10
8秒前
等待纸飞机完成签到,获得积分10
8秒前
英俊水池完成签到,获得积分10
8秒前
凉小远完成签到,获得积分10
8秒前
程哲瀚完成签到,获得积分10
8秒前
柠檬不萌完成签到,获得积分10
9秒前
dhgg发布了新的文献求助50
9秒前
Xx发布了新的文献求助10
9秒前
9秒前
汽泡完成签到,获得积分10
9秒前
阳光完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
小李叭叭完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427323
求助须知:如何正确求助?哪些是违规求助? 4540731
关于积分的说明 14173934
捐赠科研通 4458763
什么是DOI,文献DOI怎么找? 2445096
邀请新用户注册赠送积分活动 1436178
关于科研通互助平台的介绍 1413729