Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process

可制造性设计 过程(计算) 补偿(心理学) 方向(向量空间) 几何尺寸和公差 公制(单位) 计算机科学 人工神经网络 机械工程 工程制图 工程类 几何学 人工智能 数学 操作系统 运营管理 心理学 精神分析
作者
Sushmit Chowdhury,Kunal Mhapsekar,Sam Anand
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:140 (3) 被引量:78
标识
DOI:10.1115/1.4038293
摘要

Significant advancements in the field of additive manufacturing (AM) have increased the popularity of AM in mainstream industries. The dimensional accuracy and surface finish of parts manufactured using AM depend on the AM process and the accompanying process parameters. Part build orientation is one of the most critical process parameters, since it has a direct impact on the part quality measurement metrics such as cusp error, manufacturability concerns for geometric features such as thin regions and small fusible openings, and support structure parameters. In conjunction with the build orientation, the cyclic heating and cooling of the material involved in the AM processes lead to nonuniform deformations throughout the part. These factors cumulatively affect the design conformity, surface finish, and the postprocessing requirements of the manufactured parts. In this paper, a two-step part build orientation optimization and thermal compensation methodology is presented to minimize the geometric inaccuracies resulting in the part during the AM process. In the first step, a weighted optimization model is used to determine the optimal build orientation for a part with respect to the aforementioned part quality and manufacturability metrics. In the second step, a novel artificial neural network (ANN)-based geometric compensation methodology is used on the part in its optimal orientation to make appropriate geometric modifications to counteract the thermal effects resulting from the AM process. The effectiveness of this compensation is assessed on an example part using a new point cloud to part conformity metric and shows significant improvements in the manufactured part's geometric accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
splemeth完成签到,获得积分10
刚刚
WYJ发布了新的文献求助10
刚刚
刚刚
扎心应助樱花草采纳,获得10
刚刚
刚刚
华仔应助强健的电源采纳,获得10
1秒前
CAST1347完成签到,获得积分10
1秒前
酷酷妙梦发布了新的文献求助10
1秒前
1秒前
moon发布了新的文献求助20
2秒前
乔呀完成签到,获得积分10
2秒前
3秒前
21完成签到,获得积分10
3秒前
包容的琦发布了新的文献求助10
3秒前
无辜的冬寒完成签到,获得积分10
3秒前
4秒前
H-China发布了新的文献求助10
4秒前
4秒前
科研小哥发布了新的文献求助10
4秒前
田様应助djm采纳,获得20
5秒前
千年主治完成签到 ,获得积分10
5秒前
5秒前
KevinSun完成签到,获得积分10
6秒前
晓天完成签到,获得积分10
6秒前
Suagy发布了新的文献求助10
6秒前
6秒前
ruby完成签到,获得积分10
6秒前
六月完成签到,获得积分10
6秒前
令狐新竹完成签到 ,获得积分10
7秒前
Akim应助很在乎采纳,获得10
7秒前
小虾米完成签到 ,获得积分10
7秒前
李健应助花Cheung采纳,获得10
7秒前
高高万天发布了新的文献求助10
7秒前
勇敢的妞妞完成签到,获得积分10
7秒前
明芷蝶完成签到,获得积分10
7秒前
嘻嘻完成签到,获得积分10
7秒前
Orange应助WYJ采纳,获得10
7秒前
害羞的书芹完成签到,获得积分10
8秒前
Eric_Z发布了新的文献求助10
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384