Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process

可制造性设计 过程(计算) 补偿(心理学) 方向(向量空间) 几何尺寸和公差 公制(单位) 计算机科学 人工神经网络 机械工程 工程制图 工程类 几何学 人工智能 数学 心理学 精神分析 操作系统 运营管理
作者
Sushmit Chowdhury,Kunal Mhapsekar,Sam Anand
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:140 (3) 被引量:78
标识
DOI:10.1115/1.4038293
摘要

Significant advancements in the field of additive manufacturing (AM) have increased the popularity of AM in mainstream industries. The dimensional accuracy and surface finish of parts manufactured using AM depend on the AM process and the accompanying process parameters. Part build orientation is one of the most critical process parameters, since it has a direct impact on the part quality measurement metrics such as cusp error, manufacturability concerns for geometric features such as thin regions and small fusible openings, and support structure parameters. In conjunction with the build orientation, the cyclic heating and cooling of the material involved in the AM processes lead to nonuniform deformations throughout the part. These factors cumulatively affect the design conformity, surface finish, and the postprocessing requirements of the manufactured parts. In this paper, a two-step part build orientation optimization and thermal compensation methodology is presented to minimize the geometric inaccuracies resulting in the part during the AM process. In the first step, a weighted optimization model is used to determine the optimal build orientation for a part with respect to the aforementioned part quality and manufacturability metrics. In the second step, a novel artificial neural network (ANN)-based geometric compensation methodology is used on the part in its optimal orientation to make appropriate geometric modifications to counteract the thermal effects resulting from the AM process. The effectiveness of this compensation is assessed on an example part using a new point cloud to part conformity metric and shows significant improvements in the manufactured part's geometric accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助冷酷灵枫采纳,获得10
1秒前
益生益生完成签到 ,获得积分10
1秒前
Lawrence完成签到,获得积分10
1秒前
yyyyy发布了新的文献求助10
2秒前
JamesPei应助cm515531采纳,获得10
3秒前
精明松思给精明松思的求助进行了留言
3秒前
4秒前
4秒前
5秒前
111发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
dongdong发布了新的文献求助10
6秒前
6秒前
科研通AI5应助178181采纳,获得10
6秒前
qwert完成签到,获得积分20
6秒前
cm515531完成签到,获得积分10
6秒前
7秒前
7秒前
大一泽发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Ava应助yes采纳,获得10
10秒前
yyyhhh发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
星辰大海应助玄叶采纳,获得10
11秒前
乐观小之发布了新的文献求助10
12秒前
12秒前
12秒前
天真涵双发布了新的文献求助30
12秒前
淡淡依凝发布了新的文献求助30
12秒前
脑洞疼应助guozizi采纳,获得10
12秒前
张腾飞发布了新的文献求助20
13秒前
科研饼发布了新的文献求助10
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111