Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate

聚丙烯腈 催化作用 金属有机骨架 纳米纤维 咪唑酯 静电纺丝 沸石咪唑盐骨架 化学 材料科学 化学工程 多相催化 复合数 吸附 纳米技术 无机化学 有机化学 聚合物 复合材料 工程类
作者
Chaohai Wang,Hongyu Wang,Rui Luo,Chao Liu,Jiansheng Li,Xiuyun Sun,Jinyou Shen,Weiqing Han,Lianjun Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:330: 262-271 被引量:175
标识
DOI:10.1016/j.cej.2017.07.156
摘要

Abstract Metal-organic framework (MOF) nanocrystalline materials have received great attention because of their application in heterogeneous catalysis. However, they suffer from poor separation from reaction mixtures in practical applications. In this study, we report the first cobalt metal-organic framework containing zeolitic imidazolate framework (ZIF)-67 nanoparticles immobilized on electrospun polyacrylonitrile (PAN) nanofibers, which was used as a composite catalyst (ZIF-67/PAN) for activating peroxymonosulfate (PMS). Detailed characterization showed that the ZIF-67/PAN nanofibers possessed a flexible one-dimensional structure. To demonstrate the catalytic performance of the ZIF-67/PAN nanofibers, the activation of PMS for the catalytic degradation of acid yellow-17 (AY) was chosen as the model catalytic reaction. The results show that 95.1% of AY (500 mg L−1) was removed by ZIF-67/PAN in 10 min, which is much higher than many other PMS catalyst. More interestingly, the flexible ZIF-67/PAN composite nanofibers catalysts were not only easy to separate from solution but they also retained high catalytic stability. The influencing factors for PMS activation were also investigated, including the catalyst dosage, reaction temperature, solution pH, and doping with competing organic molecules. The degradation mechanism was elucidated by electron paramagnetic resonance experiments. This work provides a new sight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF materials in more practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真怜南完成签到,获得积分10
刚刚
刚刚
JJ完成签到,获得积分20
刚刚
打打应助崔优秀采纳,获得10
1秒前
xpx完成签到,获得积分10
1秒前
1秒前
高挑的涛发布了新的文献求助10
2秒前
alex发布了新的文献求助10
4秒前
温温完成签到,获得积分10
4秒前
4秒前
鄂海菡发布了新的文献求助10
4秒前
爱吃困困饺子完成签到,获得积分10
5秒前
5秒前
5秒前
明凡完成签到,获得积分10
5秒前
WDavid完成签到,获得积分10
6秒前
xie发布了新的文献求助10
6秒前
浦肯野应助小杨不吃羊采纳,获得30
6秒前
工科研狗发布了新的文献求助10
6秒前
7秒前
劲秉应助柚屿采纳,获得20
7秒前
imoo完成签到,获得积分10
8秒前
雪白的世倌完成签到,获得积分20
9秒前
天真怜南发布了新的文献求助30
9秒前
9秒前
zsj3787发布了新的文献求助10
9秒前
昏睡的乐菱应助微微采纳,获得10
10秒前
lily完成签到,获得积分10
10秒前
洛神之心1124完成签到,获得积分10
10秒前
exy发布了新的文献求助10
10秒前
11秒前
完美世界应助精明云朵采纳,获得10
12秒前
ding应助酷酷的小鸽子采纳,获得10
12秒前
SYLH应助草莓雪酪采纳,获得10
13秒前
FAN发布了新的文献求助10
13秒前
李健应助杀出个黎明采纳,获得10
13秒前
琳琳给琳琳的求助进行了留言
13秒前
机智语雪发布了新的文献求助10
14秒前
14秒前
熬夜的鹰完成签到,获得积分10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221