声动力疗法
材料科学
光催化
氧气
纳米医学
光热治疗
辐照
光动力疗法
纳米技术
纳米颗粒
化学
催化作用
生物化学
物理
有机化学
核物理学
作者
Xiaoxia Han,Ju Huang,Xiangxiang Jing,Dayan Yang,Han Lin,Zhigang Wang,Pan Li,Yu Chen
出处
期刊:ACS Nano
[American Chemical Society]
日期:2018-04-26
卷期号:12 (5): 4545-4555
被引量:396
标识
DOI:10.1021/acsnano.8b00899
摘要
The conventional inorganic semiconductors are not suitable for in vivo therapeutic nanomedicine because of the lack of an adequate and safe irradiation source to activate them. This work reports on the rational design of titania (TiO2)-based semiconductors for enhanced and synergistic sono-/photoinduced tumor eradication by creating an oxygen-deficient TiO2–x layer onto the surface of TiO2 nanocrystals, which can create a crystalline-disordered core/shell structure (TiO2@TiO2–x) with black color. As found in the lessons from traditional photocatalysis, such an oxygen-deficient TiO2–x layer with abundant oxygen defects facilitates and enhances the separation of electrons (e–) and holes (h+) from the energy-band structure upon external ultrasound irradiation, which can significantly improve the efficacy of sono-triggered sonocatalytic tumor therapy. Such an oxygen-deficient TiO2–x layer can also endow black titania nanoparticles with high photothermal-conversion efficiency (39.8%) at the NIR-II biowindow (1064 nm) for enhanced photothermal hyperthermia. Both in vitro cell level and systematic in vivo tumor-bearing mice xenograft evaluations have demonstrated the high synergistic efficacy of combined and enhanced sonodynamic therapy and photothermal ablation as assisted by oxygen-deficient black titania, which has achieved complete tumor eradication with high therapeutic biosafety and without obvious reoccurrence. This work not only provides the paradigm of high therapeutic efficacy of a combined sono-/photoinduced tumor-treatment protocol but also significantly broadens the nanomedical applications of semiconductor-based nanoplatforms by rational design of their nanostructures and control of their physiochemical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI