Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma

人工智能 支持向量机 血管平滑肌脂肪瘤 肾细胞癌 医学 神经组阅片室 模式识别(心理学) 计算机科学 放射科 病理 内科学 神经学 精神科
作者
Zhichao Feng,Pengfei Rong,Peng Cao,Qingyu Zhou,Wenwei Zhu,Zhimin Yan,Qianyun Liu,Wei Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:28 (4): 1625-1633 被引量:211
标识
DOI:10.1007/s00330-017-5118-z
摘要

To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周涛发布了新的文献求助30
1秒前
柴桑青木完成签到,获得积分0
3秒前
小柠檬完成签到,获得积分10
4秒前
少盐完成签到,获得积分10
5秒前
刻苦牛马完成签到 ,获得积分10
6秒前
6秒前
Cold发布了新的文献求助10
7秒前
好奇小怪发布了新的文献求助10
8秒前
9秒前
10秒前
SciGPT应助四糸乃采纳,获得10
11秒前
愉快日记本完成签到,获得积分10
11秒前
执着绿草发布了新的文献求助10
11秒前
12秒前
14秒前
完美世界应助lianliyou采纳,获得10
14秒前
深情安青应助xieyuanxing采纳,获得10
14秒前
15秒前
15秒前
hhan完成签到,获得积分10
15秒前
NexusExplorer应助星河在眼里采纳,获得10
16秒前
李健的小迷弟应助xiaomi采纳,获得10
16秒前
16秒前
16秒前
木子完成签到,获得积分10
17秒前
邺yu完成签到,获得积分10
18秒前
li发布了新的文献求助10
18秒前
Cecilia完成签到,获得积分10
18秒前
19秒前
请及时确认完成签到,获得积分10
20秒前
20秒前
Arshur完成签到,获得积分20
20秒前
姜姜完成签到,获得积分10
21秒前
21秒前
kk完成签到,获得积分10
22秒前
李健应助BBrian采纳,获得10
22秒前
乐观发布了新的文献求助10
22秒前
小艺发布了新的文献求助10
22秒前
qqy发布了新的文献求助10
22秒前
mingyu发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055