已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma

人工智能 支持向量机 血管平滑肌脂肪瘤 肾细胞癌 医学 神经组阅片室 模式识别(心理学) 计算机科学 放射科 病理 内科学 神经学 精神科
作者
Zhichao Feng,Pengfei Rong,Peng Cao,Qingyu Zhou,Wenwei Zhu,Zhimin Yan,Qianyun Liu,Wei Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:28 (4): 1625-1633 被引量:211
标识
DOI:10.1007/s00330-017-5118-z
摘要

To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Yuan完成签到,获得积分10
4秒前
大模型应助精明向梦采纳,获得10
4秒前
5秒前
朱鑫汗发布了新的文献求助10
5秒前
尾状叶完成签到 ,获得积分10
5秒前
6秒前
123完成签到 ,获得积分10
6秒前
西西弗发布了新的文献求助10
7秒前
7秒前
7秒前
吸吸完成签到,获得积分10
8秒前
希望天下0贩的0应助wang采纳,获得10
8秒前
独特的语柔完成签到 ,获得积分10
9秒前
朴实子骞完成签到 ,获得积分10
9秒前
HYY发布了新的文献求助10
10秒前
科研小黑发布了新的文献求助10
10秒前
clyde凌丫发布了新的文献求助10
13秒前
13秒前
14秒前
hehehehehe完成签到 ,获得积分10
15秒前
Lucas应助关正卿采纳,获得10
17秒前
核桃发布了新的文献求助10
19秒前
21秒前
21秒前
萌帆星完成签到 ,获得积分10
22秒前
26秒前
小鱼发布了新的文献求助10
26秒前
NexusExplorer应助shinn采纳,获得10
29秒前
30秒前
半江发布了新的文献求助10
32秒前
32秒前
袅袅完成签到 ,获得积分10
33秒前
高贵的尔蓝完成签到,获得积分20
34秒前
欣喜的元绿完成签到,获得积分20
35秒前
oddfunction发布了新的文献求助10
36秒前
36秒前
燧人氏发布了新的文献求助10
40秒前
福福发布了新的文献求助10
40秒前
以七完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051959
求助须知:如何正确求助?哪些是违规求助? 4279117
关于积分的说明 13338628
捐赠科研通 4094495
什么是DOI,文献DOI怎么找? 2241059
邀请新用户注册赠送积分活动 1247407
关于科研通互助平台的介绍 1176581