Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma

人工智能 支持向量机 血管平滑肌脂肪瘤 肾细胞癌 医学 神经组阅片室 模式识别(心理学) 计算机科学 放射科 病理 内科学 神经学 精神科
作者
Zhichao Feng,Pengfei Rong,Peng Cao,Qingyu Zhou,Wenwei Zhu,Zhimin Yan,Qianyun Liu,Wei Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:28 (4): 1625-1633 被引量:199
标识
DOI:10.1007/s00330-017-5118-z
摘要

To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
羿_liu完成签到,获得积分10
3秒前
3秒前
大气的秋完成签到,获得积分10
3秒前
4秒前
许大脚完成签到 ,获得积分10
4秒前
乐乐应助矮小的乐菱采纳,获得10
5秒前
赘婿应助任性沁采纳,获得10
5秒前
Lucas应助lixy采纳,获得10
5秒前
感动忆霜发布了新的文献求助10
6秒前
6秒前
lijiaoyang发布了新的文献求助10
7秒前
荔枝榨汁儿应助羿_liu采纳,获得10
7秒前
9秒前
hh完成签到,获得积分20
9秒前
小二郎应助伊可采纳,获得10
9秒前
Dong完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
慕青应助不知道起什么id采纳,获得10
10秒前
镜墨发布了新的文献求助10
10秒前
默listening发布了新的文献求助10
12秒前
12秒前
13秒前
明理小土豆完成签到,获得积分10
13秒前
万能图书馆应助黑虎采纳,获得10
13秒前
zhangxiao发布了新的文献求助10
13秒前
14秒前
15秒前
ccherty发布了新的文献求助10
15秒前
璇222完成签到,获得积分10
16秒前
16秒前
16秒前
落尘府完成签到,获得积分10
17秒前
风中沂完成签到 ,获得积分10
17秒前
lh发布了新的文献求助10
18秒前
18秒前
Dong发布了新的文献求助10
18秒前
独木舟完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295372
求助须知:如何正确求助?哪些是违规求助? 2931352
关于积分的说明 8451778
捐赠科研通 2604004
什么是DOI,文献DOI怎么找? 1421496
科研通“疑难数据库(出版商)”最低求助积分说明 660882
邀请新用户注册赠送积分活动 643906