电磁感应
能量收集
能量(信号处理)
电气工程
工程类
计算机科学
电子工程
电磁线圈
物理
量子力学
作者
Adrian Zurbuchen,Andreas Haeberlin,Lukas Bereuter,Aloïs Pfenniger,Simon Bosshard,Micha Kernen,Paul Philipp Heinisch,Juerg Fuhrer,Rolf Vogel
出处
期刊:IEEE Transactions on Biomedical Engineering
[Institute of Electrical and Electronics Engineers]
日期:2018-02-01
卷期号:65 (2): 424-430
被引量:34
标识
DOI:10.1109/tbme.2017.2773568
摘要
cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided.in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo.the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively.harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device.the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI