Endocardial Energy Harvesting by Electromagnetic Induction

电磁感应 能量收集 能量(信号处理) 电气工程 工程类 计算机科学 电子工程 电磁线圈 物理 量子力学
作者
Adrian Zurbuchen,Andreas Haeberlin,Lukas Bereuter,Aloïs Pfenniger,Simon Bosshard,Micha Kernen,Paul Philipp Heinisch,Juerg Fuhrer,Rolf Vogel
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 424-430 被引量:34
标识
DOI:10.1109/tbme.2017.2773568
摘要

cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided.in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo.the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively.harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device.the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈梦岚完成签到,获得积分10
刚刚
yug发布了新的文献求助10
刚刚
蒋时晏完成签到,获得积分0
1秒前
JamesPei应助zz采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
脑洞疼应助Leexxxhaoo采纳,获得10
2秒前
2秒前
2秒前
RC_Wang应助东东采纳,获得10
2秒前
大脸妹发布了新的文献求助10
2秒前
两张发布了新的文献求助10
3秒前
3秒前
Akim应助执着的小蘑菇采纳,获得10
3秒前
调研昵称发布了新的文献求助10
3秒前
念念发布了新的文献求助10
4秒前
畅快的鱼发布了新的文献求助10
4秒前
搞怪藏今完成签到 ,获得积分10
5秒前
yu发布了新的文献求助10
5秒前
5秒前
qifa发布了新的文献求助10
5秒前
kingwhitewing完成签到,获得积分10
5秒前
6秒前
WTT发布了新的文献求助10
6秒前
仄兀完成签到,获得积分10
6秒前
四喜完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
Yenom完成签到 ,获得积分10
9秒前
10秒前
10秒前
SciGPT应助浩浩大人采纳,获得10
10秒前
迅速冰岚发布了新的文献求助10
10秒前
10秒前
WTT完成签到,获得积分20
11秒前
11秒前
苹果煎饼发布了新的文献求助10
11秒前
yan发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678