Deep Learning to Classify Radiology Free-Text Reports

医学 人工智能 卷积神经网络 深度学习 自然语言处理 模式识别(心理学) 放射科 机器学习 计算机科学
作者
Matthew C. Chen,Robyn L. Ball,Lingyao Yang,N Moradzadeh,Brian E. Chapman,David B. Larson,Curtis P. Langlotz,Timothy J. Amrhein,Matthew P. Lungren
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 845-852 被引量:204
标识
DOI:10.1148/radiol.2017171115
摘要

Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material–enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
Cherish应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
Lori发布了新的文献求助10
1秒前
2秒前
2秒前
郭丹丹完成签到 ,获得积分10
3秒前
景笑天发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
NikiJu完成签到 ,获得积分10
5秒前
荣荣完成签到,获得积分10
7秒前
7秒前
充电宝应助小杨采纳,获得10
7秒前
zhang发布了新的文献求助10
7秒前
drirshad完成签到,获得积分10
8秒前
如梦如画发布了新的文献求助10
8秒前
星辰大海应助lhz采纳,获得10
8秒前
mym发布了新的文献求助10
10秒前
10秒前
希望天下0贩的0应助感谢采纳,获得10
11秒前
周周完成签到 ,获得积分10
12秒前
12秒前
xxx关注了科研通微信公众号
12秒前
13秒前
FF完成签到,获得积分10
13秒前
汉堡国王发布了新的文献求助10
14秒前
sheishei完成签到,获得积分10
14秒前
老福贵儿应助niko采纳,获得10
15秒前
15秒前
诚心的大白菜真实的钥匙完成签到 ,获得积分10
16秒前
景笑天完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492