Deep Learning to Classify Radiology Free-Text Reports

医学 人工智能 卷积神经网络 深度学习 自然语言处理 模式识别(心理学) 放射科 机器学习 计算机科学
作者
Matthew C. Chen,Robyn L. Ball,Lingyao Yang,N Moradzadeh,Brian E. Chapman,David B. Larson,Curtis P. Langlotz,Timothy J. Amrhein,Matthew P. Lungren
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 845-852 被引量:204
标识
DOI:10.1148/radiol.2017171115
摘要

Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material–enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qian发布了新的文献求助30
2秒前
2秒前
可爱的函函应助江夏清采纳,获得10
3秒前
七十七asdmn完成签到,获得积分10
4秒前
郝煜祺完成签到,获得积分10
5秒前
科研通AI2S应助luo采纳,获得10
6秒前
青糯完成签到 ,获得积分10
6秒前
6秒前
紫陌完成签到,获得积分0
6秒前
自己完成签到,获得积分10
6秒前
动人的招牌完成签到 ,获得积分10
6秒前
LM发布了新的文献求助10
6秒前
coffee完成签到 ,获得积分10
7秒前
7秒前
打打应助qian采纳,获得10
7秒前
今后应助wsd采纳,获得10
8秒前
9秒前
小黄完成签到,获得积分10
9秒前
10秒前
11秒前
热心如花完成签到 ,获得积分10
12秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
韦觅松发布了新的文献求助10
13秒前
神勇冬莲发布了新的文献求助10
13秒前
Lelern发布了新的文献求助30
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
指已成殇应助科研通管家采纳,获得200
14秒前
浮游应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379465
求助须知:如何正确求助?哪些是违规求助? 4503814
关于积分的说明 14016664
捐赠科研通 4412588
什么是DOI,文献DOI怎么找? 2423880
邀请新用户注册赠送积分活动 1416751
关于科研通互助平台的介绍 1394290