重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deep Learning to Classify Radiology Free-Text Reports

医学 人工智能 卷积神经网络 深度学习 自然语言处理 模式识别(心理学) 放射科 机器学习 计算机科学
作者
Matthew C. Chen,Robyn L. Ball,Lingyao Yang,N Moradzadeh,Brian E. Chapman,David B. Larson,Curtis P. Langlotz,Timothy J. Amrhein,Matthew P. Lungren
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 845-852 被引量:204
标识
DOI:10.1148/radiol.2017171115
摘要

Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material–enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助mildjorker采纳,获得20
刚刚
刚刚
大哥门完成签到,获得积分10
1秒前
axz完成签到,获得积分10
1秒前
1秒前
乐乐应助sun采纳,获得10
1秒前
机灵又蓝完成签到,获得积分10
1秒前
科研通AI6应助哈哈哈采纳,获得30
1秒前
传奇3应助Zzhn采纳,获得10
2秒前
研友_VZG7GZ应助dw采纳,获得10
2秒前
2秒前
2秒前
生动成危完成签到 ,获得积分10
2秒前
一点点脸红完成签到,获得积分10
3秒前
彩色毛豆发布了新的文献求助10
3秒前
faye发布了新的文献求助10
3秒前
1282941496完成签到,获得积分10
3秒前
blank完成签到,获得积分10
3秒前
WBTT发布了新的文献求助10
4秒前
cherish完成签到,获得积分10
4秒前
FashionBoy应助冷静白亦采纳,获得10
4秒前
4秒前
5秒前
桐桐应助Codd采纳,获得10
5秒前
5秒前
鱼是乎发布了新的文献求助10
5秒前
5秒前
成天睡大觉完成签到 ,获得积分20
5秒前
6秒前
6秒前
雪碧加冰完成签到,获得积分10
7秒前
7秒前
8秒前
HJJHJH发布了新的文献求助10
8秒前
8秒前
fawr完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
云栖完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654