Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:157: 39-47 被引量:43
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqct完成签到,获得积分10
刚刚
zmx完成签到,获得积分20
1秒前
Sandy完成签到,获得积分10
1秒前
dandanpang完成签到 ,获得积分10
1秒前
2秒前
皓轩发布了新的文献求助10
2秒前
碧蓝的夏彤完成签到,获得积分10
2秒前
duduguai完成签到,获得积分10
2秒前
3秒前
汉堡包应助洁净艳一采纳,获得10
4秒前
5秒前
1234567890发布了新的文献求助10
6秒前
mirror发布了新的文献求助10
6秒前
6秒前
8秒前
打打应助dudu采纳,获得10
8秒前
粱如波发布了新的文献求助10
9秒前
矢思然发布了新的文献求助10
10秒前
共享精神应助backback采纳,获得10
10秒前
小马甲应助……采纳,获得10
11秒前
满意的涵菱完成签到,获得积分10
11秒前
哎呀呀发布了新的文献求助10
11秒前
标致小翠发布了新的文献求助10
12秒前
追佩奇十条街完成签到,获得积分10
12秒前
mmm发布了新的文献求助10
12秒前
ysy完成签到,获得积分10
12秒前
12秒前
zuofighting完成签到,获得积分10
14秒前
精明的海露应助自信凤凰采纳,获得50
14秒前
ina完成签到,获得积分10
14秒前
栗子呢呢呢完成签到 ,获得积分10
15秒前
充电宝应助绘图功能采纳,获得10
15秒前
15秒前
洁净艳一完成签到,获得积分10
16秒前
科研通AI5应助hiipaige采纳,获得10
16秒前
lili发布了新的文献求助10
17秒前
Xiaohu完成签到,获得积分10
19秒前
Cactus应助zuofighting采纳,获得10
19秒前
Timezzz完成签到,获得积分10
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835