Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:157: 39-47 被引量:43
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllll07完成签到 ,获得积分10
刚刚
六六发布了新的文献求助10
刚刚
栖梧砚客完成签到,获得积分10
1秒前
3秒前
852应助坚定迎天采纳,获得10
3秒前
思源应助yue957采纳,获得10
4秒前
SYLH应助外向芹菜采纳,获得10
5秒前
葡萄糖完成签到,获得积分10
7秒前
大模型应助无限的听白采纳,获得10
9秒前
Dylan发布了新的文献求助10
9秒前
乐乐应助jll采纳,获得10
10秒前
慕青应助wxy采纳,获得10
10秒前
六六完成签到,获得积分10
11秒前
13秒前
zdy完成签到,获得积分10
14秒前
15秒前
无限的水壶完成签到 ,获得积分10
15秒前
jjj完成签到,获得积分20
16秒前
852应助哼哼唧唧采纳,获得10
16秒前
Dylan完成签到,获得积分10
17秒前
18秒前
Akim应助苜久久采纳,获得10
19秒前
rioo发布了新的文献求助10
19秒前
zdy发布了新的文献求助10
21秒前
丁鹏笑完成签到 ,获得积分0
21秒前
饱满的鑫完成签到,获得积分10
21秒前
24秒前
ffffwj2024完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
26秒前
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
28秒前
hi应助科研通管家采纳,获得30
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
march应助科研通管家采纳,获得100
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972247
求助须知:如何正确求助?哪些是违规求助? 3516737
关于积分的说明 11184569
捐赠科研通 3252221
什么是DOI,文献DOI怎么找? 1796273
邀请新用户注册赠送积分活动 876339
科研通“疑难数据库(出版商)”最低求助积分说明 805483