亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:157: 39-47 被引量:43
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱丹彤发布了新的文献求助10
2秒前
TXZ06完成签到,获得积分10
4秒前
5秒前
千早爱音应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
33秒前
34秒前
Gabriel发布了新的文献求助10
40秒前
mmmm完成签到,获得积分10
1分钟前
1分钟前
老广发布了新的文献求助10
1分钟前
1分钟前
老广发布了新的文献求助10
2分钟前
2分钟前
wrl2023发布了新的文献求助10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
wrl2023完成签到,获得积分10
2分钟前
老广发布了新的文献求助10
2分钟前
2分钟前
3分钟前
charih完成签到 ,获得积分10
3分钟前
xiaolang2004完成签到,获得积分10
4分钟前
4分钟前
4分钟前
LJL完成签到 ,获得积分10
4分钟前
4分钟前
luyao发布了新的文献求助10
5分钟前
YZChen完成签到,获得积分10
5分钟前
千早爱音完成签到,获得积分10
5分钟前
领导范儿应助可爱丹彤采纳,获得10
5分钟前
5分钟前
可爱丹彤发布了新的文献求助10
5分钟前
jin发布了新的文献求助10
5分钟前
6分钟前
6分钟前
boluohu发布了新的文献求助10
6分钟前
jin完成签到,获得积分10
6分钟前
情怀应助jin采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848652
捐赠科研通 4335991
什么是DOI,文献DOI怎么找? 2380709
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998