Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:157: 39-47 被引量:43
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一坨完成签到 ,获得积分10
刚刚
科研通AI5应助net80yhm采纳,获得10
1秒前
lh发布了新的文献求助10
2秒前
Einson完成签到 ,获得积分10
3秒前
lx发布了新的文献求助10
3秒前
001完成签到,获得积分10
4秒前
开着飞机骑拖拉机完成签到,获得积分10
4秒前
寇婧怡完成签到 ,获得积分10
5秒前
阿湫发布了新的文献求助10
5秒前
Qsss发布了新的文献求助10
5秒前
5秒前
6秒前
JamesPei应助111采纳,获得10
6秒前
执笔完成签到,获得积分10
6秒前
手可摘星辰完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
李健应助大帅采纳,获得10
8秒前
9秒前
冷艳的火龙果完成签到,获得积分10
9秒前
不知完成签到 ,获得积分10
9秒前
Zard发布了新的文献求助10
11秒前
清仔发布了新的文献求助10
11秒前
12秒前
大地上的鱼完成签到,获得积分10
12秒前
12秒前
上官若男应助平常的路人采纳,获得10
12秒前
小花发布了新的文献求助10
13秒前
庸俗完成签到,获得积分10
14秒前
15秒前
论文顺利发布了新的文献求助10
15秒前
15秒前
砚行书完成签到,获得积分10
15秒前
CodeCraft应助Qsss采纳,获得10
15秒前
情怀应助葫芦娃采纳,获得10
16秒前
小慈爱鸡完成签到 ,获得积分10
16秒前
ttelsa完成签到,获得积分10
16秒前
年轻小之完成签到 ,获得积分10
16秒前
16秒前
snowdream发布了新的文献求助10
17秒前
xiaoying完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048