亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:157: 39-47 被引量:43
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳完成签到,获得积分10
19秒前
可爱的函函应助芳芳采纳,获得10
23秒前
Orange应助坦率嫣然采纳,获得10
24秒前
852应助sam采纳,获得10
29秒前
32秒前
37秒前
sam完成签到,获得积分10
38秒前
坦率嫣然发布了新的文献求助10
38秒前
sam发布了新的文献求助10
42秒前
浮游应助sam采纳,获得10
54秒前
田様应助坦率嫣然采纳,获得10
1分钟前
共享精神应助长情胡萝卜采纳,获得10
1分钟前
1分钟前
1分钟前
Shicheng完成签到,获得积分10
1分钟前
顺心的惜蕊完成签到 ,获得积分10
1分钟前
xyj完成签到,获得积分20
1分钟前
充电宝应助xyj采纳,获得10
1分钟前
油点小鳄发布了新的文献求助10
2分钟前
甜蜜水蜜桃完成签到 ,获得积分10
2分钟前
2分钟前
ZanE完成签到,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
chiyu完成签到,获得积分10
3分钟前
领导范儿应助WHDD采纳,获得10
3分钟前
油点小鳄完成签到,获得积分10
3分钟前
科研通AI2S应助封尘逸动采纳,获得10
3分钟前
南桥枝完成签到 ,获得积分10
3分钟前
王金阳完成签到,获得积分10
3分钟前
3分钟前
SikY完成签到 ,获得积分10
3分钟前
精明凡双完成签到,获得积分0
3分钟前
封尘逸动发布了新的文献求助10
3分钟前
小材不菜关注了科研通微信公众号
3分钟前
油点小鳄发布了新的文献求助10
3分钟前
秦摆烂完成签到 ,获得积分10
4分钟前
盛小铃完成签到 ,获得积分10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
满意远望完成签到 ,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137383
求助须知:如何正确求助?哪些是违规求助? 4337222
关于积分的说明 13511256
捐赠科研通 4175819
什么是DOI,文献DOI怎么找? 2289718
邀请新用户注册赠送积分活动 1290258
关于科研通互助平台的介绍 1231923