Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images

人工智能 计算机科学 彩色内窥镜 模式识别(心理学) 计算机视觉 支持向量机 图像纹理 直方图 灰度级 分类器(UML) 图像处理 结肠镜检查 像素 图像(数学) 医学 癌症 结直肠癌 内科学
作者
Hussam Ali,Mussarat Yasmin,Muhammad Sharif,Mubashir Husain Rehmani
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:157: 39-47 被引量:41
标识
DOI:10.1016/j.cmpb.2018.01.013
摘要

The early diagnosis of stomach cancer can be performed by using a proper screening procedure. Chromoendoscopy (CH) is an image-enhanced video endoscopy technique, which is used for inspection of the gastrointestinal-tract by spraying dyes to highlight the gastric mucosal structures. An endoscopy session can end up with generating a large number of video frames. Therefore, inspection of every individual endoscopic-frame is an exhaustive task for the medical experts. In contrast with manual inspection, the automated analysis of gastroenterology images using computer vision based techniques can provide assistance to endoscopist, by finding out abnormal frames from the whole endoscopic sequence.In this paper, we have presented a new feature extraction method named as Gabor-based gray-level co-occurrence matrix (G2LCM) for computer-aided detection of CH abnormal frames. It is a hybrid texture extraction approach which extracts a combination both local and global texture descriptors. Moreover, texture information of a CH image is represented by computing the gray level co-occurrence matrix of Gabor filters responses. Furthermore, the second-order statistics of these co-occurrence matrices are computed to represent images' texture.The obtained results show the possibility to correctly classifying abnormal from normal frames, with sensitivity, specificity, accuracy, and area under the curve as 91%, 82%, 87% and 0.91 respectively, by using a support vector machine classifier and G2LCM texture features.It is apparent from results that the proposed system can be used for providing aid to the gastroenterologist in the screening of the gastric tract. Ultimately, the time taken by an endoscopic procedure will be sufficiently reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书枫哥哥发布了新的文献求助10
1秒前
2秒前
嘿嘿嘿发布了新的文献求助10
3秒前
NexusExplorer应助HUI采纳,获得10
3秒前
礼堂的丁真完成签到 ,获得积分10
4秒前
Lucky发布了新的文献求助10
4秒前
4秒前
直率心锁发布了新的文献求助10
6秒前
6秒前
狂野的元容完成签到,获得积分10
8秒前
小江关注了科研通微信公众号
10秒前
nxxxxxxxxxx完成签到,获得积分10
11秒前
仁爱的汉堡完成签到,获得积分10
13秒前
茉莉奶绿完成签到,获得积分10
13秒前
hqr3000完成签到,获得积分10
13秒前
14秒前
15秒前
微笑藏鸟完成签到 ,获得积分10
15秒前
zhffdss完成签到,获得积分20
15秒前
15秒前
华仔应助有魅力的电脑采纳,获得10
16秒前
王kk完成签到 ,获得积分10
17秒前
18秒前
18秒前
书枫哥哥完成签到,获得积分10
18秒前
hhh发布了新的文献求助10
18秒前
19秒前
20秒前
木子玫发布了新的文献求助10
20秒前
索拉里斯完成签到,获得积分10
21秒前
22秒前
倪妮完成签到,获得积分10
22秒前
23秒前
miracle发布了新的文献求助10
23秒前
23秒前
小蘑菇应助琋珣采纳,获得10
24秒前
赘婿应助yx采纳,获得10
24秒前
25秒前
XianyunWang完成签到,获得积分10
25秒前
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328927
求助须知:如何正确求助?哪些是违规求助? 2958914
关于积分的说明 8592778
捐赠科研通 2637342
什么是DOI,文献DOI怎么找? 1443446
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656040