清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study

鼻咽癌 医学 队列 肿瘤科 回顾性队列研究 内科学 转移 临床终点 癌症 放射治疗 临床试验
作者
Xin-Ran Tang,Ying-Qin Li,Shao-Bo Liang,Wei Jiang,Fang Liu,Wen-Xiu Ge,Ling‐Long Tang,Yan-Ping Mao,Qing-Mei He,Xiao-Jing Yang,Yuan Zhang,Xin Wen,Jiän Zhang,Yaqin Wang,Panpan Zhang,Ying Sun,Jing‐Ping Yun,Jing Zeng,Li Li,Lizhi Liu
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:19 (3): 382-393 被引量:264
标识
DOI:10.1016/s1470-2045(18)30080-9
摘要

Gene expression patterns can be used as prognostic biomarkers in various types of cancers. We aimed to identify a gene expression pattern for individual distant metastatic risk assessment in patients with locoregionally advanced nasopharyngeal carcinoma.In this multicentre, retrospective, cohort analysis, we included 937 patients with locoregionally advanced nasopharyngeal carcinoma from three Chinese hospitals: the Sun Yat-sen University Cancer Center (Guangzhou, China), the Affiliated Hospital of Guilin Medical University (Guilin, China), and the First People's Hospital of Foshan (Foshan, China). Using microarray analysis, we profiled mRNA gene expression between 24 paired locoregionally advanced nasopharyngeal carcinoma tumours from patients at Sun Yat-sen University Cancer Center with or without distant metastasis after radical treatment. Differentially expressed genes were examined using digital expression profiling in a training cohort (Guangzhou training cohort; n=410) to build a gene classifier using a penalised regression model. We validated the prognostic accuracy of this gene classifier in an internal validation cohort (Guangzhou internal validation cohort, n=204) and two external independent cohorts (Guilin cohort, n=165; Foshan cohort, n=158). The primary endpoint was distant metastasis-free survival. Secondary endpoints were disease-free survival and overall survival.We identified 137 differentially expressed genes between metastatic and non-metastatic locoregionally advanced nasopharyngeal carcinoma tissues. A distant metastasis gene signature for locoregionally advanced nasopharyngeal carcinoma (DMGN) that consisted of 13 genes was generated to classify patients into high-risk and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter distant metastasis-free survival (hazard ratio [HR] 4·93, 95% CI 2·99-8·16; p<0·0001), disease-free survival (HR 3·51, 2·43-5·07; p<0·0001), and overall survival (HR 3·22, 2·18-4·76; p<0·0001) than patients with low-risk scores. The prognostic accuracy of DMGN was validated in the internal and external cohorts. Furthermore, among patients with low-risk scores in the combined training and internal cohorts, concurrent chemotherapy improved distant metastasis-free survival compared with those patients who did not receive concurrent chemotherapy (HR 0·40, 95% CI 0·19-0·83; p=0·011), whereas patients with high-risk scores did not benefit from concurrent chemotherapy (HR 1·03, 0·71-1·50; p=0·876). This was also validated in the two external cohorts combined. We developed a nomogram based on the DMGN and other variables that predicted an individual's risk of distant metastasis, which was strengthened by adding Epstein-Barr virus DNA status.The DMGN is a reliable prognostic tool for distant metastasis in patients with locoregionally advanced nasopharyngeal carcinoma and might be able to predict which patients benefit from concurrent chemotherapy. It has the potential to guide treatment decisions for patients at different risk of distant metastasis.The National Natural Science Foundation of China, the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period, the Natural Science Foundation of Guang Dong Province, the National Key Research and Development Program of China, the Innovation Team Development Plan of the Ministry of Education, the Health & Medical Collaborative Innovation Project of Guangzhou City, China, and the Program of Introducing Talents of Discipline to Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动初蓝完成签到 ,获得积分10
5秒前
不安的晓灵完成签到 ,获得积分10
11秒前
Lijiahui完成签到 ,获得积分10
15秒前
乾坤侠客LW完成签到,获得积分10
19秒前
NINI完成签到 ,获得积分10
28秒前
九花青完成签到,获得积分10
33秒前
执着的忆雪完成签到,获得积分10
40秒前
zzhui完成签到,获得积分10
42秒前
自然的含蕾完成签到 ,获得积分10
1分钟前
gincle完成签到 ,获得积分10
1分钟前
lydiaabc完成签到,获得积分10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
1分钟前
自由擎汉发布了新的文献求助10
1分钟前
微卫星不稳定完成签到 ,获得积分0
1分钟前
外向的妍完成签到,获得积分10
1分钟前
dapan0622完成签到,获得积分10
1分钟前
Will完成签到,获得积分10
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
lanxinge完成签到 ,获得积分10
2分钟前
mengliu完成签到,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
去码头整点薯条完成签到 ,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
Yina完成签到 ,获得积分10
3分钟前
白水完成签到,获得积分10
3分钟前
妥妥酱完成签到,获得积分10
3分钟前
SN完成签到 ,获得积分10
3分钟前
fatcat完成签到,获得积分10
3分钟前
穿山的百足公主完成签到 ,获得积分10
3分钟前
tbdxby完成签到 ,获得积分0
3分钟前
Tong完成签到,获得积分0
3分钟前
guoxihan完成签到,获得积分10
4分钟前
标致的之柔完成签到 ,获得积分10
4分钟前
cgs完成签到 ,获得积分10
4分钟前
辞安完成签到,获得积分10
5分钟前
辞安发布了新的文献求助10
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
感性的道之完成签到 ,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211775
求助须知:如何正确求助?哪些是违规求助? 4388156
关于积分的说明 13663616
捐赠科研通 4248467
什么是DOI,文献DOI怎么找? 2330958
邀请新用户注册赠送积分活动 1328658
关于科研通互助平台的介绍 1281816