Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study

鼻咽癌 医学 队列 肿瘤科 回顾性队列研究 内科学 转移 临床终点 癌症 放射治疗 临床试验
作者
Xin-Ran Tang,Ying-Qin Li,Shao-Bo Liang,Wei Jiang,Fang Liu,Wen-Xiu Ge,Ling‐Long Tang,Yan-Ping Mao,Qing-Mei He,Xiao-Jing Yang,Yuan Zhang,Xin Wen,Jiän Zhang,Yaqin Wang,Panpan Zhang,Ying Sun,Jing‐Ping Yun,Jing Zeng,Li Li,Lizhi Liu
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:19 (3): 382-393 被引量:264
标识
DOI:10.1016/s1470-2045(18)30080-9
摘要

Gene expression patterns can be used as prognostic biomarkers in various types of cancers. We aimed to identify a gene expression pattern for individual distant metastatic risk assessment in patients with locoregionally advanced nasopharyngeal carcinoma.In this multicentre, retrospective, cohort analysis, we included 937 patients with locoregionally advanced nasopharyngeal carcinoma from three Chinese hospitals: the Sun Yat-sen University Cancer Center (Guangzhou, China), the Affiliated Hospital of Guilin Medical University (Guilin, China), and the First People's Hospital of Foshan (Foshan, China). Using microarray analysis, we profiled mRNA gene expression between 24 paired locoregionally advanced nasopharyngeal carcinoma tumours from patients at Sun Yat-sen University Cancer Center with or without distant metastasis after radical treatment. Differentially expressed genes were examined using digital expression profiling in a training cohort (Guangzhou training cohort; n=410) to build a gene classifier using a penalised regression model. We validated the prognostic accuracy of this gene classifier in an internal validation cohort (Guangzhou internal validation cohort, n=204) and two external independent cohorts (Guilin cohort, n=165; Foshan cohort, n=158). The primary endpoint was distant metastasis-free survival. Secondary endpoints were disease-free survival and overall survival.We identified 137 differentially expressed genes between metastatic and non-metastatic locoregionally advanced nasopharyngeal carcinoma tissues. A distant metastasis gene signature for locoregionally advanced nasopharyngeal carcinoma (DMGN) that consisted of 13 genes was generated to classify patients into high-risk and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter distant metastasis-free survival (hazard ratio [HR] 4·93, 95% CI 2·99-8·16; p<0·0001), disease-free survival (HR 3·51, 2·43-5·07; p<0·0001), and overall survival (HR 3·22, 2·18-4·76; p<0·0001) than patients with low-risk scores. The prognostic accuracy of DMGN was validated in the internal and external cohorts. Furthermore, among patients with low-risk scores in the combined training and internal cohorts, concurrent chemotherapy improved distant metastasis-free survival compared with those patients who did not receive concurrent chemotherapy (HR 0·40, 95% CI 0·19-0·83; p=0·011), whereas patients with high-risk scores did not benefit from concurrent chemotherapy (HR 1·03, 0·71-1·50; p=0·876). This was also validated in the two external cohorts combined. We developed a nomogram based on the DMGN and other variables that predicted an individual's risk of distant metastasis, which was strengthened by adding Epstein-Barr virus DNA status.The DMGN is a reliable prognostic tool for distant metastasis in patients with locoregionally advanced nasopharyngeal carcinoma and might be able to predict which patients benefit from concurrent chemotherapy. It has the potential to guide treatment decisions for patients at different risk of distant metastasis.The National Natural Science Foundation of China, the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period, the Natural Science Foundation of Guang Dong Province, the National Key Research and Development Program of China, the Innovation Team Development Plan of the Ministry of Education, the Health & Medical Collaborative Innovation Project of Guangzhou City, China, and the Program of Introducing Talents of Discipline to Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luqong完成签到,获得积分0
刚刚
Su73发布了新的文献求助10
2秒前
oolivy发布了新的文献求助20
4秒前
cc完成签到,获得积分10
7秒前
8秒前
止戈发布了新的文献求助50
14秒前
14秒前
英姑应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
浪人情歌发布了新的文献求助20
15秒前
qiang完成签到,获得积分10
19秒前
疼痛诊疗发布了新的文献求助20
20秒前
sssyyy发布了新的文献求助10
20秒前
ding应助都找到了采纳,获得10
21秒前
23秒前
23秒前
科研兄完成签到,获得积分10
25秒前
高手中的糕手完成签到,获得积分10
27秒前
科研兄发布了新的文献求助10
29秒前
33秒前
沉静的灵安完成签到 ,获得积分10
34秒前
文静静静完成签到 ,获得积分10
38秒前
陈尘关注了科研通微信公众号
40秒前
雨雨雨雨发布了新的文献求助10
41秒前
41秒前
43秒前
hdy331完成签到,获得积分10
43秒前
44秒前
44秒前
我不吃葱发布了新的文献求助10
44秒前
baifeicao完成签到 ,获得积分10
44秒前
47秒前
Xin发布了新的文献求助10
49秒前
薛人英发布了新的文献求助10
50秒前
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629