Gas Monitoring and Sampling of Large-Format Lithium-Ion Cells

热失控 锂(药物) 发热 电池(电) 核工程 能量密度 灾难性故障 电解质 离子 工艺工程 材料科学 计算机科学 电气工程 纳米技术 工程物理 化学 工程类 电极 复合材料 物理 功率(物理) 有机化学 物理化学 医学 量子力学 内分泌学 热力学
作者
Christopher Hendricks
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (4): 219-219 被引量:3
标识
DOI:10.1149/ma2017-02/4/219
摘要

Lithium-ion batteries are a ubiquitous energy storage technology utilized in many military, consumer, and industrial applications. Energy density, high working voltage, and long cycle life are just a few of the advantages offered by lithium-ion batteries; however, safety of lithium-ion batteries continues to pose a challenge. Many of the benefits of lithium-ion batteries are offset by the steps taken to prevent catastrophic failure, especially in safety-critical applications. To fully realize the possibilities of lithium-ion battery deployment, an improved understanding of failure mechanisms is necessary. When lithium-ion cells are operated outside of their stable working limits (i.e. voltage, rate, temperature), they can fail catastrophically. This catastrophic failure is termed thermal runaway, and stems from a combination of gas generation mechanisms and heat generation within the cell. If sufficient gas builds up within the cell, the cell can vent gases and electrolyte into the surrounding atmosphere, either through a machined vent or due to rupture of the casing. In the worst case scenario, the released vent products can ignite and propagate to adjacent cells or systems. While gas generation mechanisms are generally understood [1-6], the majority of research focuses on gases released after the cell fails. Studying real-time gas generation in lithium-ion cells opens up avenues for developing prognostic models to enable failure avoidance strategies. In our work, we have developed a methodology for monitoring internal cell pressure in large-format (>30 Ah) cylindrical lithium-ion cells. The cells are punctured to enable direct measurement of the gas pressure without impacting cell performance. Furthermore, sampling of the gas prior to catastrophic failure is possible. Gas generation is induced by overcharging the cell at a constant C-rate (C/2) until failure occurs inside of an abusive test box designed for handling large battery failure events. Figure 1 illustrates the pressure rise in the cell throughout an overcharge event. The cell is initially pressurized due to gas generation during the life cycle of the cell, and remains constant for the preliminary portion of overcharge. Once the cell’s voltage peaks and begins to decrease, the pressure starts to rise quickly. The pressure continues to rise until a gas sample is collected just prior to failure. This process has been repeated for multiple cells with similar results, demonstrating a repeatable experimental setup that can shed insight into the evolution of gas within a large-format commercial lithium-ion cell. This has practical applications for developing failure mitigation strategies and analyzing design through physics-based battery modeling. This paper will detail the experimental setup, in-situ measurements of gas pressure during overcharge, and preliminary gas analysis. References: W. Kong, H. Li, X. Huang, and L. Chen, “Gas evolution behaviors for several cathode materials in lithium-ion batteries,” Journal of Power Sources Vol. 142, 2005, pp. 285-291. K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, and R. Ishikawa, “Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell,” Journal of Power Sources Vol. 81-82, 1999, pp. 715-719. A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker, "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes." RSC Advances, Vol. 4, Issue 7 (2014) pp. 3633-3642. V. Somandepalli, K.C. Marr, and Q. Horn, “Explosion hazards due to failures of lithium-ion batteries,” 9th Global Congress on Process Safety, San Antonio Texas (2013) T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, A. Satoh, “Overcharge reaction of lithium-ion batteries,” Journal of Power Sources, Volume 146, Issues 1–2, (2005) pp. 97-100 E. Roth, C. Crafts, D. Doughty, and J. McBreen, “Advanced technology development program for lithium-ion batteries: thermal abuse performance of 18650 li-ion cells,” Sandia National Laboratory Report, SAND2004-0584, 2004 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
frank发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
感谢超帅冬易转发科研通微信,获得积分50
2秒前
2秒前
3秒前
3秒前
lixia完成签到 ,获得积分10
3秒前
3秒前
4秒前
在水一方应助jy采纳,获得10
4秒前
4秒前
Lucas完成签到,获得积分10
5秒前
5秒前
NorthWang发布了新的文献求助10
5秒前
薄哼哼完成签到,获得积分10
5秒前
troubadourelf完成签到,获得积分10
5秒前
科研小白菜完成签到,获得积分20
6秒前
淡定的思松应助12采纳,获得10
6秒前
lan发布了新的文献求助10
6秒前
韩金龙发布了新的文献求助10
7秒前
7秒前
小飞七应助红毛兔采纳,获得10
7秒前
小仙虎殿下完成签到 ,获得积分10
7秒前
Ethan完成签到,获得积分10
8秒前
8秒前
9秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
9秒前
子春完成签到 ,获得积分10
9秒前
平常的纸飞机完成签到,获得积分10
9秒前
soso完成签到 ,获得积分10
11秒前
11秒前
狗狗应助跳跃乘风采纳,获得20
12秒前
小油条应助Amai采纳,获得20
12秒前
科研通AI5应助clear采纳,获得10
12秒前
韩金龙完成签到,获得积分10
13秒前
科研通AI2S应助LiShin采纳,获得10
13秒前
希望天下0贩的0应助尘雾采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794