已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gas Monitoring and Sampling of Large-Format Lithium-Ion Cells

热失控 锂(药物) 发热 电池(电) 核工程 能量密度 灾难性故障 电解质 离子 工艺工程 材料科学 计算机科学 电气工程 纳米技术 工程物理 化学 工程类 电极 复合材料 物理 功率(物理) 有机化学 物理化学 医学 量子力学 内分泌学 热力学
作者
Christopher Hendricks
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (4): 219-219 被引量:3
标识
DOI:10.1149/ma2017-02/4/219
摘要

Lithium-ion batteries are a ubiquitous energy storage technology utilized in many military, consumer, and industrial applications. Energy density, high working voltage, and long cycle life are just a few of the advantages offered by lithium-ion batteries; however, safety of lithium-ion batteries continues to pose a challenge. Many of the benefits of lithium-ion batteries are offset by the steps taken to prevent catastrophic failure, especially in safety-critical applications. To fully realize the possibilities of lithium-ion battery deployment, an improved understanding of failure mechanisms is necessary. When lithium-ion cells are operated outside of their stable working limits (i.e. voltage, rate, temperature), they can fail catastrophically. This catastrophic failure is termed thermal runaway, and stems from a combination of gas generation mechanisms and heat generation within the cell. If sufficient gas builds up within the cell, the cell can vent gases and electrolyte into the surrounding atmosphere, either through a machined vent or due to rupture of the casing. In the worst case scenario, the released vent products can ignite and propagate to adjacent cells or systems. While gas generation mechanisms are generally understood [1-6], the majority of research focuses on gases released after the cell fails. Studying real-time gas generation in lithium-ion cells opens up avenues for developing prognostic models to enable failure avoidance strategies. In our work, we have developed a methodology for monitoring internal cell pressure in large-format (>30 Ah) cylindrical lithium-ion cells. The cells are punctured to enable direct measurement of the gas pressure without impacting cell performance. Furthermore, sampling of the gas prior to catastrophic failure is possible. Gas generation is induced by overcharging the cell at a constant C-rate (C/2) until failure occurs inside of an abusive test box designed for handling large battery failure events. Figure 1 illustrates the pressure rise in the cell throughout an overcharge event. The cell is initially pressurized due to gas generation during the life cycle of the cell, and remains constant for the preliminary portion of overcharge. Once the cell’s voltage peaks and begins to decrease, the pressure starts to rise quickly. The pressure continues to rise until a gas sample is collected just prior to failure. This process has been repeated for multiple cells with similar results, demonstrating a repeatable experimental setup that can shed insight into the evolution of gas within a large-format commercial lithium-ion cell. This has practical applications for developing failure mitigation strategies and analyzing design through physics-based battery modeling. This paper will detail the experimental setup, in-situ measurements of gas pressure during overcharge, and preliminary gas analysis. References: W. Kong, H. Li, X. Huang, and L. Chen, “Gas evolution behaviors for several cathode materials in lithium-ion batteries,” Journal of Power Sources Vol. 142, 2005, pp. 285-291. K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, and R. Ishikawa, “Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell,” Journal of Power Sources Vol. 81-82, 1999, pp. 715-719. A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker, "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes." RSC Advances, Vol. 4, Issue 7 (2014) pp. 3633-3642. V. Somandepalli, K.C. Marr, and Q. Horn, “Explosion hazards due to failures of lithium-ion batteries,” 9th Global Congress on Process Safety, San Antonio Texas (2013) T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, A. Satoh, “Overcharge reaction of lithium-ion batteries,” Journal of Power Sources, Volume 146, Issues 1–2, (2005) pp. 97-100 E. Roth, C. Crafts, D. Doughty, and J. McBreen, “Advanced technology development program for lithium-ion batteries: thermal abuse performance of 18650 li-ion cells,” Sandia National Laboratory Report, SAND2004-0584, 2004 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白小超人发布了新的文献求助10
3秒前
星空完成签到 ,获得积分10
5秒前
沐易完成签到 ,获得积分10
8秒前
YOLO完成签到,获得积分10
13秒前
w5566完成签到 ,获得积分10
14秒前
233完成签到 ,获得积分10
18秒前
19秒前
李健的小迷弟应助吴祥佳采纳,获得30
19秒前
少川完成签到 ,获得积分10
21秒前
23秒前
24秒前
心动nofear完成签到 ,获得积分20
25秒前
wuyin发布了新的文献求助10
26秒前
共享精神应助hhchhcmxhf采纳,获得10
27秒前
Soey发布了新的文献求助10
28秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
Ray羽曦~完成签到 ,获得积分10
33秒前
书中魂我自不理会完成签到 ,获得积分10
34秒前
GXY完成签到 ,获得积分10
34秒前
34秒前
心动nofear发布了新的文献求助10
35秒前
35秒前
端庄的飞阳完成签到 ,获得积分10
36秒前
yps完成签到 ,获得积分10
36秒前
Emon发布了新的文献求助10
36秒前
36秒前
YXL发布了新的文献求助10
40秒前
41秒前
十三完成签到 ,获得积分10
41秒前
ESLG发布了新的文献求助10
46秒前
望远山完成签到,获得积分10
50秒前
岛不言发布了新的文献求助10
50秒前
李健应助Fx采纳,获得10
52秒前
hello2001完成签到 ,获得积分10
54秒前
55秒前
55秒前
SASI完成签到 ,获得积分10
55秒前
56秒前
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210