Gas Monitoring and Sampling of Large-Format Lithium-Ion Cells

热失控 锂(药物) 发热 电池(电) 核工程 能量密度 灾难性故障 电解质 离子 工艺工程 材料科学 计算机科学 电气工程 纳米技术 工程物理 化学 工程类 电极 复合材料 物理 功率(物理) 有机化学 物理化学 医学 量子力学 内分泌学 热力学
作者
Christopher Hendricks
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (4): 219-219 被引量:3
标识
DOI:10.1149/ma2017-02/4/219
摘要

Lithium-ion batteries are a ubiquitous energy storage technology utilized in many military, consumer, and industrial applications. Energy density, high working voltage, and long cycle life are just a few of the advantages offered by lithium-ion batteries; however, safety of lithium-ion batteries continues to pose a challenge. Many of the benefits of lithium-ion batteries are offset by the steps taken to prevent catastrophic failure, especially in safety-critical applications. To fully realize the possibilities of lithium-ion battery deployment, an improved understanding of failure mechanisms is necessary. When lithium-ion cells are operated outside of their stable working limits (i.e. voltage, rate, temperature), they can fail catastrophically. This catastrophic failure is termed thermal runaway, and stems from a combination of gas generation mechanisms and heat generation within the cell. If sufficient gas builds up within the cell, the cell can vent gases and electrolyte into the surrounding atmosphere, either through a machined vent or due to rupture of the casing. In the worst case scenario, the released vent products can ignite and propagate to adjacent cells or systems. While gas generation mechanisms are generally understood [1-6], the majority of research focuses on gases released after the cell fails. Studying real-time gas generation in lithium-ion cells opens up avenues for developing prognostic models to enable failure avoidance strategies. In our work, we have developed a methodology for monitoring internal cell pressure in large-format (>30 Ah) cylindrical lithium-ion cells. The cells are punctured to enable direct measurement of the gas pressure without impacting cell performance. Furthermore, sampling of the gas prior to catastrophic failure is possible. Gas generation is induced by overcharging the cell at a constant C-rate (C/2) until failure occurs inside of an abusive test box designed for handling large battery failure events. Figure 1 illustrates the pressure rise in the cell throughout an overcharge event. The cell is initially pressurized due to gas generation during the life cycle of the cell, and remains constant for the preliminary portion of overcharge. Once the cell’s voltage peaks and begins to decrease, the pressure starts to rise quickly. The pressure continues to rise until a gas sample is collected just prior to failure. This process has been repeated for multiple cells with similar results, demonstrating a repeatable experimental setup that can shed insight into the evolution of gas within a large-format commercial lithium-ion cell. This has practical applications for developing failure mitigation strategies and analyzing design through physics-based battery modeling. This paper will detail the experimental setup, in-situ measurements of gas pressure during overcharge, and preliminary gas analysis. References: W. Kong, H. Li, X. Huang, and L. Chen, “Gas evolution behaviors for several cathode materials in lithium-ion batteries,” Journal of Power Sources Vol. 142, 2005, pp. 285-291. K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, and R. Ishikawa, “Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell,” Journal of Power Sources Vol. 81-82, 1999, pp. 715-719. A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker, "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes." RSC Advances, Vol. 4, Issue 7 (2014) pp. 3633-3642. V. Somandepalli, K.C. Marr, and Q. Horn, “Explosion hazards due to failures of lithium-ion batteries,” 9th Global Congress on Process Safety, San Antonio Texas (2013) T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, A. Satoh, “Overcharge reaction of lithium-ion batteries,” Journal of Power Sources, Volume 146, Issues 1–2, (2005) pp. 97-100 E. Roth, C. Crafts, D. Doughty, and J. McBreen, “Advanced technology development program for lithium-ion batteries: thermal abuse performance of 18650 li-ion cells,” Sandia National Laboratory Report, SAND2004-0584, 2004 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不回首发布了新的文献求助10
1秒前
2秒前
哔哔发布了新的文献求助10
2秒前
3秒前
3秒前
瘦瘦的小蘑菇完成签到 ,获得积分10
3秒前
情怀应助独特夜绿采纳,获得10
3秒前
ffx完成签到,获得积分10
4秒前
4秒前
Fjj发布了新的文献求助10
4秒前
曹小仙男发布了新的文献求助10
5秒前
Hello应助Pluto采纳,获得10
5秒前
zhuzhu完成签到,获得积分10
5秒前
hyjcnhyj发布了新的文献求助10
6秒前
6秒前
woobinhua完成签到,获得积分10
6秒前
林夏发布了新的文献求助10
7秒前
leeyc完成签到,获得积分10
8秒前
英姑应助阮楷瑞采纳,获得10
10秒前
爱静静应助喜悦的秋烟采纳,获得10
10秒前
小刘小刘完成签到 ,获得积分10
10秒前
科研小达子完成签到,获得积分10
10秒前
zsg发布了新的文献求助200
11秒前
Aaronzxy完成签到,获得积分10
11秒前
zgtmark完成签到,获得积分10
11秒前
橘子树完成签到 ,获得积分10
11秒前
科研仔完成签到,获得积分20
11秒前
Nakyseo完成签到,获得积分10
11秒前
善学以致用应助纪问安采纳,获得10
11秒前
12秒前
星辰大海应助leeyc采纳,获得10
12秒前
13秒前
毒蛇如我发布了新的文献求助10
14秒前
15秒前
16秒前
www完成签到,获得积分10
16秒前
Jasper应助xyzhang采纳,获得10
16秒前
来日方长完成签到,获得积分10
16秒前
17秒前
慕青应助科研小达子采纳,获得10
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954