14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation

钝化 材料科学 量子点 钙钛矿(结构) 光电子学 光伏系统 太阳能电池 载流子寿命 纳米技术 能量转换效率 化学工程 无机化学 化学 电气工程 图层(电子) 工程类
作者
Xufeng Ling,Sijie Zhou,Jianyu Yuan,Junwei Shi,Yuli Qian,Bryon W. Larson,Qian Zhao,Chaochao Qin,Fangchao Li,Guozheng Shi,Connor Stewart,Jiaxin Hu,Xuliang Zhang,Joseph M. Luther,Steffen Duhm,Wanli Ma
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (28) 被引量:301
标识
DOI:10.1002/aenm.201900721
摘要

Abstract Surface manipulation of quantum dots (QDs) has been extensively reported to be crucial to their performance when applied into optoelectronic devices, especially for photovoltaic devices. In this work, an efficient surface passivation method for emerging CsPbI 3 perovskite QDs using a variety of inorganic cesium salts (cesium acetate (CsAc), cesium idodide (CsI), cesium carbonate (Cs 2 CO 3 ), and cesium nitrate (CsNO 3 )) is reported. The Cs‐salts post‐treatment can not only fill the vacancy at the CsPbI 3 perovskite surface but also improve electron coupling between CsPbI 3 QDs. As a result, the free carrier lifetime, diffusion length, and mobility of QD film are simultaneously improved, which are beneficial for fabricating high‐quality conductive QD films for efficient solar cell devices. After optimizing the post‐treatment process, the short‐circuit current density and fill factor are significantly enhanced, delivering an impressive efficiency of 14.10% for CsPbI 3 QD solar cells. In addition, the Cs‐salt‐treated CsPbI 3 QD devices exhibit improved stability against moisture due to the improved surface environment of these QDs. These findings will provide insight into the design of high‐performance and low‐trap‐states perovskite QD films with desirable optoelectronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助阿楠采纳,获得10
1秒前
忧郁的听露完成签到,获得积分20
1秒前
宇文天川完成签到,获得积分10
2秒前
2秒前
三十三完成签到,获得积分10
2秒前
顾矜应助li采纳,获得10
2秒前
2秒前
久久发布了新的文献求助10
3秒前
蔡小葵完成签到 ,获得积分10
3秒前
3秒前
科目三应助cd采纳,获得10
4秒前
研友_LXOvq8完成签到,获得积分10
4秒前
xu完成签到,获得积分10
4秒前
祝雲发布了新的文献求助10
4秒前
鳗鱼灵寒完成签到 ,获得积分10
4秒前
5秒前
5秒前
从这完成签到,获得积分10
5秒前
乐乱发布了新的文献求助10
5秒前
铁匠完成签到,获得积分10
5秒前
5秒前
6秒前
慕青应助抓恐龙采纳,获得10
6秒前
伶俐的不尤完成签到,获得积分20
6秒前
6秒前
zhouyan完成签到,获得积分10
7秒前
老疯智完成签到,获得积分10
7秒前
夜已深完成签到,获得积分10
7秒前
ZXneuro完成签到,获得积分10
7秒前
7秒前
一平发布了新的文献求助10
8秒前
爱吃泡芙完成签到,获得积分10
8秒前
8秒前
Ll发布了新的文献求助10
9秒前
集力申完成签到,获得积分10
9秒前
老疯智发布了新的文献求助10
9秒前
9秒前
宇文青寒完成签到,获得积分10
10秒前
10秒前
心灵美的抽屉完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672