End‐to‐end quantitative analysis modeling of near‐infrared spectroscopy based on convolutional neural network

卷积神经网络 计算机科学 近红外光谱 人工智能 选择(遗传算法) 过程(计算) 光谱学 模式识别(心理学) 航程(航空) 材料科学 光学 物理 量子力学 操作系统 复合材料
作者
Yuanyuan Chen,Zhibin Wang
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:33 (5) 被引量:57
标识
DOI:10.1002/cem.3122
摘要

Abstract During the near‐infrared spectroscopy analysis process, modeling the quantitative relationship between the collected spectral information and target components is an important procedure. Before using the traditional modeling methods, it is often necessary to select the most featured wavelengths and eliminate those uninformative wavelengths. However, the wavelength selection algorithms can not only increase the model complexity but also may contain some adjustable parameters, which need the users to have more expertise knowledge and experiences. To solve this problem, this paper proposed a novel end‐to‐end quantitative analysis modeling method for near‐infrared spectroscopy based on convolutional neural network (CNN), which directly takes the whole range of collected raw spectral information as input without wavelength selection. The public corn NIR dataset was taken as example to validate the efficiency of proposed method. The experimental results showed that, firstly, if all the whole range of raw spectral information was taken as the input of modeling, the generalized performance of CNN outperforms the traditional methods, and the difference is statistically significant; secondly, if the traditional methods were combined with wavelength selection algorithms, their generalized performances were similar to CNN model; there is no statistical difference. The results indicated that applying the deep learning methods (take CNN as representative) to establish the quantitative analysis model of near‐infrared spectroscopy is easy to use and has more potential popularize values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文森特的向日葵完成签到 ,获得积分10
刚刚
luermei完成签到,获得积分10
刚刚
1秒前
肖2完成签到,获得积分10
1秒前
Liolsy发布了新的文献求助10
1秒前
2秒前
2秒前
现实的安波完成签到,获得积分10
3秒前
3秒前
拼搏语薇完成签到,获得积分10
3秒前
sususu完成签到,获得积分20
4秒前
独特从蓉发布了新的文献求助30
4秒前
Re2411发布了新的文献求助10
5秒前
mmb关闭了mmb文献求助
6秒前
FashionBoy应助冷静的奇迹采纳,获得10
6秒前
aladi1011发布了新的文献求助30
7秒前
7秒前
7秒前
平常的兔子完成签到,获得积分20
9秒前
10秒前
李爱国应助晨曦采纳,获得10
10秒前
华仔应助悦耳的白开水采纳,获得30
10秒前
小马甲应助Jason采纳,获得10
10秒前
Ziheng98发布了新的文献求助10
11秒前
Re2411完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
葡萄糖完成签到,获得积分10
12秒前
难过小懒虫完成签到,获得积分10
12秒前
12秒前
ercha发布了新的文献求助10
15秒前
16秒前
虎皮猫大人完成签到,获得积分10
16秒前
16秒前
jacky010发布了新的文献求助30
16秒前
独特从蓉完成签到,获得积分20
16秒前
17秒前
天天快乐应助李喜喜采纳,获得10
18秒前
FashionBoy应助今天不加班采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952796
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11091005
捐赠科研通 3228793
什么是DOI,文献DOI怎么找? 1785139
邀请新用户注册赠送积分活动 869145
科研通“疑难数据库(出版商)”最低求助积分说明 801350