已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

End‐to‐end quantitative analysis modeling of near‐infrared spectroscopy based on convolutional neural network

卷积神经网络 计算机科学 近红外光谱 人工智能 选择(遗传算法) 过程(计算) 光谱学 模式识别(心理学) 航程(航空) 材料科学 光学 物理 量子力学 复合材料 操作系统
作者
Yuanyuan Chen,Zhibin Wang
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:33 (5) 被引量:57
标识
DOI:10.1002/cem.3122
摘要

Abstract During the near‐infrared spectroscopy analysis process, modeling the quantitative relationship between the collected spectral information and target components is an important procedure. Before using the traditional modeling methods, it is often necessary to select the most featured wavelengths and eliminate those uninformative wavelengths. However, the wavelength selection algorithms can not only increase the model complexity but also may contain some adjustable parameters, which need the users to have more expertise knowledge and experiences. To solve this problem, this paper proposed a novel end‐to‐end quantitative analysis modeling method for near‐infrared spectroscopy based on convolutional neural network (CNN), which directly takes the whole range of collected raw spectral information as input without wavelength selection. The public corn NIR dataset was taken as example to validate the efficiency of proposed method. The experimental results showed that, firstly, if all the whole range of raw spectral information was taken as the input of modeling, the generalized performance of CNN outperforms the traditional methods, and the difference is statistically significant; secondly, if the traditional methods were combined with wavelength selection algorithms, their generalized performances were similar to CNN model; there is no statistical difference. The results indicated that applying the deep learning methods (take CNN as representative) to establish the quantitative analysis model of near‐infrared spectroscopy is easy to use and has more potential popularize values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊羊完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
刘晓倩发布了新的文献求助10
6秒前
Catalina_S应助优秀跳跳糖采纳,获得10
6秒前
mtrote发布了新的文献求助10
6秒前
DrKe完成签到,获得积分10
7秒前
7秒前
英俊的铭应助火星的雪采纳,获得10
8秒前
学丫发布了新的文献求助10
12秒前
bkagyin应助单纯的雅香采纳,获得10
14秒前
刘潼潼发布了新的文献求助10
15秒前
在水一方应助爱睡觉采纳,获得10
17秒前
19秒前
orixero应助火星的雪采纳,获得10
19秒前
SYLH应助huhu采纳,获得10
20秒前
高大厉完成签到 ,获得积分10
21秒前
22秒前
23秒前
24秒前
25秒前
27秒前
27秒前
bbbui完成签到 ,获得积分10
27秒前
今后应助ya采纳,获得10
28秒前
敏感草丛发布了新的文献求助10
28秒前
好久不见发布了新的文献求助10
29秒前
29秒前
赘婿应助xuan采纳,获得10
29秒前
天天加油发布了新的文献求助10
30秒前
LSH970829发布了新的文献求助10
31秒前
香蕉觅云应助怡然的一斩采纳,获得10
31秒前
无奈梦岚发布了新的文献求助10
32秒前
34秒前
含蓄藏花发布了新的文献求助10
34秒前
藤椒辣鱼应助LSH970829采纳,获得10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455361
求助须知:如何正确求助?哪些是违规求助? 3050639
关于积分的说明 9022109
捐赠科研通 2739250
什么是DOI,文献DOI怎么找? 1502565
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350