Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries

计算机科学 增采样 人工智能 Softmax函数 计算机视觉 像素 模式识别(心理学) 编码器 欠采样 深度学习 图像(数学) 操作系统
作者
Jawadul H. Bappy,Cody Simons,Lakshmanan Nataraj,B.S. Manjunath,Amit K. Roy–Chowdhury
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 3286-3300 被引量:379
标识
DOI:10.1109/tip.2019.2895466
摘要

With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向雅完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
爆米花应助舒心衣采纳,获得10
1秒前
2秒前
一朵小鲜花儿完成签到,获得积分10
2秒前
Uki完成签到,获得积分10
2秒前
Sodagreen2023完成签到,获得积分10
2秒前
wuhu发布了新的文献求助10
2秒前
Profeto应助yoyo20012623采纳,获得10
3秒前
英俊的铭应助标致嫣采纳,获得10
3秒前
向言之完成签到,获得积分10
3秒前
潇湘夜雨完成签到,获得积分10
3秒前
xiaoliu发布了新的文献求助10
4秒前
黑就嘿完成签到,获得积分10
4秒前
踏实的无敌完成签到,获得积分10
4秒前
ethan2801完成签到,获得积分10
4秒前
白石溪完成签到,获得积分10
4秒前
weiyongswust发布了新的文献求助10
5秒前
6秒前
快乐的鱼完成签到,获得积分10
6秒前
sssssssssss完成签到,获得积分10
6秒前
zheng完成签到 ,获得积分10
8秒前
小胡完成签到,获得积分20
12秒前
大气的裙子完成签到,获得积分10
13秒前
13秒前
xy小侠女完成签到,获得积分10
13秒前
文艺小馒头完成签到,获得积分10
13秒前
亭子完成签到,获得积分10
15秒前
zero完成签到,获得积分10
15秒前
华仔应助abc采纳,获得10
15秒前
Kay76完成签到,获得积分10
16秒前
123完成签到,获得积分10
16秒前
luwenxuan完成签到,获得积分10
16秒前
村上春树的摩的完成签到 ,获得积分10
16秒前
dachengzi完成签到,获得积分10
16秒前
健康的绮晴完成签到,获得积分10
17秒前
xiaoliu完成签到,获得积分20
17秒前
允柠完成签到,获得积分10
17秒前
灰光呀完成签到,获得积分10
17秒前
不包含特殊字符完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027