Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries

计算机科学 增采样 人工智能 Softmax函数 计算机视觉 像素 模式识别(心理学) 编码器 欠采样 深度学习 图像(数学) 操作系统
作者
Jawadul H. Bappy,Cody Simons,Lakshmanan Nataraj,B.S. Manjunath,Amit K. Roy–Chowdhury
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 3286-3300 被引量:344
标识
DOI:10.1109/tip.2019.2895466
摘要

With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rrr发布了新的文献求助10
1秒前
跳跃的静曼完成签到,获得积分10
1秒前
丰富的不惜完成签到,获得积分10
2秒前
3秒前
wfc完成签到,获得积分10
3秒前
浅梨涡完成签到 ,获得积分10
5秒前
JamesPei应助椰子熟了耶采纳,获得20
6秒前
hanyang965发布了新的文献求助10
6秒前
orixero应助喵呜采纳,获得10
6秒前
6秒前
6秒前
7秒前
en发布了新的文献求助10
7秒前
8秒前
白宝宝北北白应助氕氘氚采纳,获得10
8秒前
9秒前
进取拼搏完成签到,获得积分10
9秒前
hehsk完成签到,获得积分10
9秒前
无限鞅完成签到,获得积分20
9秒前
10秒前
DY完成签到 ,获得积分10
11秒前
郑仕完成签到,获得积分10
11秒前
11秒前
进取拼搏发布了新的文献求助10
12秒前
顺顺发布了新的文献求助10
12秒前
12秒前
在水一方应助涛涛采纳,获得10
12秒前
英姑应助义气的傲松采纳,获得10
13秒前
13秒前
哭泣蛋挞完成签到 ,获得积分10
14秒前
sweetbearm应助通~采纳,获得10
14秒前
田様应助吃饭用大碗采纳,获得10
15秒前
15秒前
16秒前
17秒前
阿斯蒂和琴酒完成签到 ,获得积分10
17秒前
珂珂发布了新的文献求助10
19秒前
19秒前
迟大猫应助我是站长才怪采纳,获得30
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808