Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries

计算机科学 增采样 人工智能 Softmax函数 计算机视觉 像素 模式识别(心理学) 编码器 欠采样 深度学习 图像(数学) 操作系统
作者
Jawadul H. Bappy,Cody Simons,Lakshmanan Nataraj,B.S. Manjunath,Amit K. Roy–Chowdhury
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 3286-3300 被引量:390
标识
DOI:10.1109/tip.2019.2895466
摘要

With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
葛稀驳回了Akim应助
1秒前
2秒前
2秒前
852应助咖褐采纳,获得10
2秒前
2秒前
3秒前
3秒前
张111发布了新的文献求助10
3秒前
hbhbj发布了新的文献求助10
3秒前
TearMarks发布了新的文献求助10
4秒前
所所应助LYZ采纳,获得10
4秒前
吞金完成签到,获得积分10
4秒前
lin发布了新的文献求助10
4秒前
科研通AI6应助小笨嘴采纳,获得10
5秒前
zxf完成签到,获得积分20
6秒前
cassiecx发布了新的文献求助10
6秒前
七七发布了新的文献求助10
6秒前
7秒前
福明明完成签到,获得积分10
7秒前
zxf发布了新的文献求助10
7秒前
8秒前
要努力写文章的小白完成签到,获得积分10
8秒前
FashionBoy应助蜜蜜芪采纳,获得10
8秒前
gwt完成签到,获得积分10
9秒前
fish112发布了新的文献求助10
9秒前
Jing发布了新的文献求助10
9秒前
9秒前
浮游应助畅快的雅青采纳,获得10
10秒前
10秒前
hbhbj发布了新的文献求助10
10秒前
wyp发布了新的文献求助10
11秒前
prode完成签到,获得积分10
12秒前
12秒前
lalala应助黎明森采纳,获得10
12秒前
13秒前
sdaDAS发布了新的文献求助10
13秒前
14秒前
CipherSage应助guochang采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058