Single and double boron atoms doped nanoporous C2N–h2D electrocatalysts for highly efficient N2 reduction reaction: a density functional theory study

过电位 电催化剂 材料科学 密度泛函理论 催化作用 纳米孔 无机化学 电化学 石墨烯 化学工程 纳米技术 物理化学 计算化学 化学 电极 有机化学 工程类 生物化学
作者
Yongyong Cao,Shengwei Deng,Qiaojun Fang,Xiang Sun,Chenxia Zhao,Jingnan Zheng,Yijing Gao,Han Zhuo,Yuejin Li,Zihao Yao,Zhongzhe Wei,Xing Zhong,Gui‐Lin Zhuang,Jianguo Wang
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:30 (33): 335403-335403 被引量:89
标识
DOI:10.1088/1361-6528/ab1d01
摘要

The electrocatalytical process is the most efficient way to produce ammonia (NH3) under ambient conditions, but developing a highly efficient and low-cost metal-free electrocatalysts remains a major scientific challenge. Hence, single atom and double boron (B) atoms doped 2D graphene-like carbon nitride (C2N-h2D) electrocatalysts have been designed (B@C2N and B2@C2N), and the efficiency of N2 reduction reaction (NRR) is examined by density functional theory calculation. The results show that the single and double B atoms can both be strongly embedded in natural nanoporous C2N with superior catalytic activity for N2 activation. The reaction mechanisms of NRR on the B@C2N and B2@C2N are both following an enzymatic pathway, and B2@C2N is a more efficient electrocatalyst with extremely low overpotential of 0.19 eV comparing to B@C2N (0.29 eV). In the low energy region, the hydrogenation of N2 is thermodynamically more favorable than the hydrogen production, thereby improving the selectivity for NRR. Based on these results, a new double-atom strategy may help guiding the experimental synthesis of highly efficient NRR electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭神仙鱼完成签到,获得积分10
1秒前
KBYer发布了新的文献求助20
1秒前
Jzhang应助tmpstlml采纳,获得10
2秒前
YoYo发布了新的文献求助10
2秒前
豌豆发布了新的文献求助10
4秒前
5秒前
言叶完成签到,获得积分10
5秒前
6秒前
CipherSage应助清新的冷松采纳,获得10
6秒前
JamesPei应助Poyd采纳,获得10
7秒前
科目三应助药学牛马采纳,获得10
8秒前
lixm发布了新的文献求助10
9秒前
NAA完成签到,获得积分10
10秒前
10秒前
tao_blue完成签到,获得积分10
10秒前
荔枝完成签到,获得积分20
10秒前
10秒前
11秒前
许多知识完成签到,获得积分10
11秒前
缓慢的战斗机完成签到,获得积分20
12秒前
圣晟胜发布了新的文献求助10
12秒前
科研通AI5应助nextconnie采纳,获得10
13秒前
陈朝旧迹完成签到,获得积分10
13秒前
无花果应助虚心海燕采纳,获得10
14秒前
sun发布了新的文献求助30
15秒前
15秒前
KBYer完成签到,获得积分10
15秒前
FashionBoy应助阳阳采纳,获得10
15秒前
许多知识发布了新的文献求助10
16秒前
苏源智完成签到,获得积分10
16秒前
Andy完成签到 ,获得积分10
18秒前
明理晓霜发布了新的文献求助10
20秒前
ZHANGMANLI0422关注了科研通微信公众号
20秒前
M先生发布了新的文献求助30
21秒前
FashionBoy应助许多知识采纳,获得10
22秒前
Poyd完成签到,获得积分10
25秒前
25秒前
故意的傲玉应助tao_blue采纳,获得10
26秒前
26秒前
kid1912完成签到,获得积分0
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849