稳健主成分分析
矩阵分解
计算机科学
主成分分析
非负矩阵分解
基质(化学分析)
稀疏PCA
因式分解
奇异值分解
模式识别(心理学)
降维
特征向量
人工智能
稀疏矩阵
算法
数据矩阵
数学
矩阵的特征分解
奇异值
作者
Yongyong Chen,Yicong Zhou
出处
期刊:International Conference on Acoustics, Speech, and Signal Processing
日期:2018-04-01
被引量:4
标识
DOI:10.1109/icassp.2018.8462041
摘要
Traditional robust principle component analysis (RPCA) has a high computational cost because RPCA needs to calculate the singular value decomposition of large matrices. To address this issue, this paper proposes a matrix-factorization-based RPCA (MFRPCA) model. MFRPCA has high computation efficiency while improving the robustness and flexibility of traditional RPCA using a non-convex low-rank approximation. Experiment results on challenging datasets demonstrate superior performance of MFRPCA compared with several advanced low-rank reconstruction methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI