Novel FeVO4/Bi7O9I3 nanocomposite with enhanced photocatalytic dye degradation and photoelectrochemical properties

光催化 纳米复合材料 光电流 材料科学 罗丹明B 甲基橙 可见光谱 线性扫描伏安法 光化学 异质结 亚甲蓝 化学工程 降级(电信) 循环伏安法 核化学 纳米技术 化学 电化学 光电子学 电极 催化作用 有机化学 物理化学 工程类 电信 计算机科学
作者
Auttaphon Chachvalvutikul,Jaroon Jakmunee,Somchai Thongtem,Sila Kittiwachana,Sulawan Kaowphong
出处
期刊:Applied Surface Science [Elsevier]
卷期号:475: 175-184 被引量:80
标识
DOI:10.1016/j.apsusc.2018.12.214
摘要

Novel FeVO4/Bi7O9I3 nanocomposites with different weight percentages (3, 6.25, 12.5, and 25%wt) of FeVO4 were successfully synthesized by cyclic microwave irradiation, followed by wet impregnation. The applications for photocatalytic dye degradation and photoelectrochemical (PEC) were investigated. The 6.25%wt-FeVO4/Bi7O9I3 nanocomposite exhibited excellent photocatalytic degradation of methylene blue, rhodamine B, and methyl orange with decolorization efficiencies of 81.3%, 98.9%, and 94.9% within 360 min, respectively. Moreover, this nanocomposite possessed excellent reusability and stability during the photocatalytic degradation process. PEC performance in water oxidation of the 6.25%wt-FeVO4/Bi7O9I3 photoanode was evaluated by linear sweep voltammetry (LSV) measurement. Enhanced PEC performance with photocurrent density of 0.029 mA cm−2 at 1.23 V (vs. RHE) was observed under visible-light irradiation, which was ca. 3.7 times higher than that of the pure Bi7O9I3. Based on the optical characterization, energy band positions, and active species trapping experiments, a possible photocatalytic mechanism of the FeVO4/Bi7O9I3 heterojunction was discussed. The enhancement in the photocatalytic and the PEC performance ascribed to synergistic effects of visible-light absorption and a favorable “type II heterojunction” structure of the FeVO4/Bi7O9I3 nanocomposite. These were the main effects that promoted the photogenerated electrons and holes transfer across the contact interface between FeVO4 and Bi7O9I3, as well as suppressed the recombination of photogenerated electron-hole pairs and facilitated charge separation and transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLL完成签到,获得积分10
1秒前
chr完成签到,获得积分10
1秒前
斯文败类应助sadd采纳,获得10
1秒前
赵慧完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
nico发布了新的文献求助10
1秒前
懒羊羊关注了科研通微信公众号
2秒前
牛马人发布了新的文献求助10
3秒前
3秒前
Sherlock完成签到,获得积分10
3秒前
酷波er应助徐爱琳采纳,获得10
3秒前
3秒前
小北发布了新的文献求助10
4秒前
嘉嘉完成签到,获得积分10
4秒前
PANXX完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
羊羊发布了新的文献求助10
4秒前
大气月饼发布了新的文献求助10
5秒前
流星砸地鼠完成签到 ,获得积分10
6秒前
6秒前
茹茹发布了新的文献求助10
6秒前
Bear发布了新的文献求助10
7秒前
赵慧发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
小蘑菇应助Sandy采纳,获得10
8秒前
8秒前
9秒前
liao应助VDC采纳,获得10
9秒前
VISIN完成签到,获得积分10
9秒前
9秒前
10秒前
NexusExplorer应助colin采纳,获得10
10秒前
10秒前
Z_xy发布了新的文献求助10
10秒前
10秒前
TiY发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210