Novel FeVO4/Bi7O9I3 nanocomposite with enhanced photocatalytic dye degradation and photoelectrochemical properties

光催化 纳米复合材料 光电流 材料科学 罗丹明B 甲基橙 可见光谱 线性扫描伏安法 光化学 异质结 亚甲蓝 化学工程 降级(电信) 循环伏安法 核化学 纳米技术 化学 电化学 光电子学 电极 催化作用 有机化学 物理化学 工程类 电信 计算机科学
作者
Auttaphon Chachvalvutikul,Jaroon Jakmunee,Somchai Thongtem,Sila Kittiwachana,Sulawan Kaowphong
出处
期刊:Applied Surface Science [Elsevier]
卷期号:475: 175-184 被引量:80
标识
DOI:10.1016/j.apsusc.2018.12.214
摘要

Novel FeVO4/Bi7O9I3 nanocomposites with different weight percentages (3, 6.25, 12.5, and 25%wt) of FeVO4 were successfully synthesized by cyclic microwave irradiation, followed by wet impregnation. The applications for photocatalytic dye degradation and photoelectrochemical (PEC) were investigated. The 6.25%wt-FeVO4/Bi7O9I3 nanocomposite exhibited excellent photocatalytic degradation of methylene blue, rhodamine B, and methyl orange with decolorization efficiencies of 81.3%, 98.9%, and 94.9% within 360 min, respectively. Moreover, this nanocomposite possessed excellent reusability and stability during the photocatalytic degradation process. PEC performance in water oxidation of the 6.25%wt-FeVO4/Bi7O9I3 photoanode was evaluated by linear sweep voltammetry (LSV) measurement. Enhanced PEC performance with photocurrent density of 0.029 mA cm−2 at 1.23 V (vs. RHE) was observed under visible-light irradiation, which was ca. 3.7 times higher than that of the pure Bi7O9I3. Based on the optical characterization, energy band positions, and active species trapping experiments, a possible photocatalytic mechanism of the FeVO4/Bi7O9I3 heterojunction was discussed. The enhancement in the photocatalytic and the PEC performance ascribed to synergistic effects of visible-light absorption and a favorable “type II heterojunction” structure of the FeVO4/Bi7O9I3 nanocomposite. These were the main effects that promoted the photogenerated electrons and holes transfer across the contact interface between FeVO4 and Bi7O9I3, as well as suppressed the recombination of photogenerated electron-hole pairs and facilitated charge separation and transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tree完成签到 ,获得积分10
刚刚
SciGPT应助ZeSheng采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
Jinyang发布了新的文献求助10
刚刚
1秒前
1秒前
三白眼完成签到,获得积分10
1秒前
贵州医科大学完成签到,获得积分10
1秒前
3秒前
DreamSeker完成签到 ,获得积分10
3秒前
科研通AI6应助zhuzhu的江湖采纳,获得10
3秒前
star应助务实雪珍采纳,获得10
4秒前
4秒前
5秒前
思源应助SUNYAOSUNYAO采纳,获得10
5秒前
kook发布了新的文献求助10
5秒前
Criminology34应助惠香香的采纳,获得10
6秒前
sober给sober的求助进行了留言
6秒前
6秒前
FashionBoy应助杜禹锋采纳,获得10
6秒前
Leon完成签到,获得积分10
6秒前
路宇鹏完成签到,获得积分10
7秒前
森林发布了新的文献求助10
7秒前
光亮又晴发布了新的文献求助10
7秒前
7秒前
BowieHuang应助优美紫槐采纳,获得10
7秒前
bkagyin应助花開采纳,获得10
8秒前
寜1发布了新的文献求助10
8秒前
实验室同学完成签到,获得积分10
8秒前
9秒前
9秒前
milk完成签到 ,获得积分10
10秒前
10秒前
myt发布了新的文献求助10
10秒前
FashionBoy应助钟铃棱采纳,获得10
10秒前
CipherSage应助11采纳,获得10
10秒前
勤恳新竹完成签到,获得积分10
10秒前
YJ完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836