Chirality‐Assisted High‐Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization

极化(电化学) 振幅 谐振器 光学 相(物质) 物理 光子学 方位角 量子力学 化学 物理化学
作者
He‐Xiu Xu,Guangwei Hu,Lei Han,Menghua Jiang,Yongjun Huang,Ying Li,Xinmi Yang,Xiaohui Ling,Liezun Chen,Jianlin Zhao,Run Hu
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:7 (4) 被引量:201
标识
DOI:10.1002/adom.201801479
摘要

Abstract Simultaneously independent control of phase, amplitude, and polarization is pivotal yet challenging for manipulating electromagnetic waves by transmissive metasurfaces. Huygens' metasurface affords a high‐efficiency recipe primarily by engineering phase‐only meta‐atoms, restricting itself from realizing unprecedentedly complex functions of the transmission beam. Here, a 3D chirality‐assisted metasurface concept relying on integrated magnetoelectric meta‐atoms is proposed. It empowers the completely decoupled and arbitrary control of phase and amplitude at large incident angles and arbitrary polarizations. This strategy thus facilitates very sophisticated beam manipulations at close‐to‐unity cross‐polarized efficiency via trilayer integrated resonators with mutual twist. The prescribed phase coverage can be determined by geometrical footprints of the unit cell, while the global azimuthal twist unlocks the capability of tuning amplitudes without affecting the phase. The concept and significance of it are validated to implement several proof‐of‐prototype demanding functionalities by thin metasurfaces of λ o /12, which generate self‐accelerating diffraction‐free Airy beams, lateral and axial dual focusing, and even specific multiplexed beam shaping, respectively. This finding opens up an alternative way in very fine control of light with minimalist complexity and advanced performance. It can stimulate novel and high‐performance versatile photonic metadevices, thanks to the fully independent control of phase, amplitude, and polarization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
毛慢慢发布了新的文献求助30
1秒前
123完成签到,获得积分10
1秒前
DTT完成签到,获得积分10
2秒前
SciGPT应助单薄白薇采纳,获得10
2秒前
jiayueiyang完成签到,获得积分10
2秒前
英俊的铭应助dingdong采纳,获得10
3秒前
情怀应助dingdong采纳,获得10
3秒前
3秒前
安静发布了新的文献求助10
4秒前
丰知然应助清新的冷松采纳,获得10
4秒前
我是老大应助时尚语梦采纳,获得10
5秒前
5秒前
小余发布了新的文献求助10
5秒前
NexusExplorer应助见雨鱼采纳,获得10
5秒前
yigu完成签到 ,获得积分20
5秒前
ding应助starcatcher采纳,获得10
6秒前
Ll发布了新的文献求助10
6秒前
赘婿应助最最最采纳,获得10
6秒前
田様应助夜白采纳,获得20
7秒前
AaronW完成签到,获得积分10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
曦澄应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
期刊应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助易伊澤采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762