卷积神经网络
分割
像素
编码器
计算机科学
人工神经网络
人工智能
深度学习
最小边界框
计算机视觉
模式识别(心理学)
图像(数学)
操作系统
作者
Cao Vu Dung,Anh Duc Le
标识
DOI:10.1016/j.autcon.2018.11.028
摘要
Abstract Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated.
科研通智能强力驱动
Strongly Powered by AbleSci AI