亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness

医学 磁共振成像 无线电技术 前列腺切除术 前列腺癌 放射基因组学 放射科 逻辑回归 有效扩散系数 癌症 破译 前列腺 生物信息学 内科学 生物
作者
Stefanie J. Hectors,Mathew Cherny,Kamlesh K. Yadav,Alp Tuna Beksaç,Hari Thulasidass,Sara Lewis,Elai Davicioni,Pei Wang,Ashutosh Tewari,Bachir Taouli
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:202 (3): 498-505 被引量:94
标识
DOI:10.1097/ju.0000000000000272
摘要

We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score.We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater.A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84).Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺利的远航完成签到 ,获得积分10
2秒前
6秒前
拼搏姒发布了新的文献求助20
8秒前
汉堡包应助独特浩然采纳,获得10
10秒前
午盏完成签到 ,获得积分10
10秒前
111关闭了111文献求助
15秒前
15秒前
牵绊完成签到 ,获得积分10
17秒前
汉堡包应助yxf采纳,获得10
19秒前
Yesyes发布了新的文献求助10
20秒前
VX完成签到,获得积分10
21秒前
25秒前
mimi完成签到,获得积分10
27秒前
Yesyes完成签到,获得积分10
27秒前
李健应助超级灰狼采纳,获得10
28秒前
29秒前
炙热的夜雪完成签到 ,获得积分10
32秒前
独特浩然发布了新的文献求助10
34秒前
李健应助啊鹏鹏采纳,获得10
35秒前
35秒前
量子星尘发布了新的文献求助10
37秒前
超级灰狼发布了新的文献求助10
42秒前
45秒前
47秒前
猫南北完成签到 ,获得积分10
47秒前
48秒前
浮浮世世发布了新的文献求助10
50秒前
50秒前
独特浩然完成签到,获得积分10
51秒前
啊鹏鹏发布了新的文献求助10
51秒前
53秒前
1111完成签到,获得积分10
53秒前
53秒前
yxf发布了新的文献求助10
54秒前
55秒前
58秒前
mmh发布了新的文献求助10
1分钟前
啦啦啦啦啦完成签到 ,获得积分10
1分钟前
mmh关闭了mmh文献求助
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902