Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness

医学 磁共振成像 无线电技术 前列腺切除术 前列腺癌 放射基因组学 放射科 逻辑回归 有效扩散系数 癌症 破译 前列腺 生物信息学 内科学 生物
作者
Stefanie J. Hectors,Mathew Cherny,Kamlesh K. Yadav,Alp Tuna Beksaç,Hari Thulasidass,Sara Lewis,Elai Davicioni,Pei Wang,Ashutosh Tewari,Bachir Taouli
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:202 (3): 498-505 被引量:94
标识
DOI:10.1097/ju.0000000000000272
摘要

We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score.We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater.A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84).Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
赘婿应助愤怒的梦柏采纳,获得10
2秒前
领导范儿应助KD357采纳,获得10
2秒前
嘻嘻嘻发布了新的文献求助10
2秒前
2秒前
3秒前
文刀发布了新的文献求助10
3秒前
lll发布了新的文献求助20
3秒前
zhe完成签到 ,获得积分10
3秒前
陈惠卿88完成签到,获得积分10
4秒前
共享精神应助木木三采纳,获得10
4秒前
4秒前
考博上岸26完成签到 ,获得积分10
4秒前
华仔应助xunoverflow采纳,获得10
5秒前
6秒前
FeLaN发布了新的文献求助10
6秒前
bkagyin应助庆幸采纳,获得10
6秒前
李雩完成签到 ,获得积分10
6秒前
7秒前
angelalxj关注了科研通微信公众号
7秒前
7秒前
小栩发布了新的文献求助10
8秒前
blank发布了新的文献求助10
8秒前
和谐念寒发布了新的文献求助10
9秒前
9秒前
tiantian发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
HH完成签到,获得积分10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得20
9秒前
10秒前
vizi应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343