Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness

医学 磁共振成像 无线电技术 前列腺切除术 前列腺癌 放射基因组学 放射科 逻辑回归 有效扩散系数 癌症 破译 前列腺 生物信息学 内科学 生物
作者
Stefanie J. Hectors,Mathew Cherny,Kamlesh K. Yadav,Alp Tuna Beksaç,Hari Thulasidass,Sara Lewis,Elai Davicioni,Pei Wang,Ashutosh Tewari,Bachir Taouli
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:202 (3): 498-505 被引量:94
标识
DOI:10.1097/ju.0000000000000272
摘要

We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score.We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater.A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84).Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独梦安完成签到 ,获得积分10
1秒前
英俊完成签到,获得积分10
1秒前
乐乐应助风格化橙采纳,获得10
2秒前
喜悦发卡完成签到,获得积分10
3秒前
活力的泥猴桃完成签到 ,获得积分10
4秒前
5秒前
xinxinwen完成签到,获得积分10
5秒前
6秒前
6秒前
EMMA发布了新的文献求助10
7秒前
Cc关闭了Cc文献求助
7秒前
TTRO完成签到,获得积分10
7秒前
m_seek完成签到,获得积分10
8秒前
木心长发布了新的文献求助10
9秒前
9秒前
土二给土二的求助进行了留言
9秒前
10秒前
在水一方应助十五采纳,获得10
12秒前
Yzh完成签到,获得积分10
12秒前
smile发布了新的文献求助10
13秒前
Michael Zhang完成签到 ,获得积分10
13秒前
邓年念发布了新的文献求助10
14秒前
云那边的山发布了新的文献求助300
15秒前
英姑应助EMMA采纳,获得10
16秒前
浮游应助xxx采纳,获得10
17秒前
深情安青应助小王采纳,获得30
17秒前
AIKaikai发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
怕孤独的聪展完成签到,获得积分10
23秒前
24秒前
24秒前
李健的小迷弟应助Lisa田采纳,获得20
24秒前
24秒前
邓年念完成签到,获得积分10
27秒前
27秒前
Windsea完成签到,获得积分10
27秒前
李健应助苟文锋采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452