Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness

医学 磁共振成像 无线电技术 前列腺切除术 前列腺癌 放射基因组学 放射科 逻辑回归 有效扩散系数 癌症 破译 前列腺 生物信息学 内科学 生物
作者
Stefanie J. Hectors,Mathew Cherny,Kamlesh K. Yadav,Alp Tuna Beksaç,Hari Thulasidass,Sara Lewis,Elai Davicioni,Pei Wang,Ashutosh Tewari,Bachir Taouli
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:202 (3): 498-505 被引量:94
标识
DOI:10.1097/ju.0000000000000272
摘要

We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score.We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater.A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84).Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11mao11完成签到 ,获得积分10
2秒前
华仔应助dreamfox采纳,获得10
3秒前
dzc发布了新的文献求助20
3秒前
5秒前
healer完成签到,获得积分10
10秒前
12秒前
忘词完成签到,获得积分10
13秒前
chen完成签到 ,获得积分10
13秒前
萝卜卷心菜完成签到 ,获得积分10
15秒前
17秒前
目m发布了新的文献求助10
17秒前
18秒前
王也发布了新的文献求助10
23秒前
Bailey完成签到,获得积分10
23秒前
24秒前
脑洞疼应助MoNeng采纳,获得10
26秒前
26秒前
蓝天应助加贝采纳,获得10
27秒前
28秒前
刘泽民完成签到,获得积分10
30秒前
CodeCraft应助佳期采纳,获得10
31秒前
浮游应助草中有粑粑采纳,获得10
31秒前
小二郎应助YEZQ采纳,获得10
32秒前
32秒前
33秒前
33秒前
椰子完成签到,获得积分10
35秒前
dzc完成签到,获得积分20
36秒前
Lyubb完成签到 ,获得积分10
37秒前
MoNeng发布了新的文献求助10
38秒前
39秒前
月半完成签到,获得积分10
39秒前
40秒前
VDC应助karstbing采纳,获得30
40秒前
浮游应助草中有粑粑采纳,获得10
40秒前
Orange应助冰激凌采纳,获得10
41秒前
小康完成签到,获得积分10
41秒前
42秒前
沉静弘文完成签到 ,获得积分10
42秒前
充电宝应助王也采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478