Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness

医学 磁共振成像 无线电技术 前列腺切除术 前列腺癌 放射基因组学 放射科 逻辑回归 有效扩散系数 癌症 破译 前列腺 生物信息学 内科学 生物
作者
Stefanie J. Hectors,Mathew Cherny,Kamlesh K. Yadav,Alp Tuna Beksaç,Hari Thulasidass,Sara Lewis,Elai Davicioni,Pei Wang,Ashutosh Tewari,Bachir Taouli
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:202 (3): 498-505 被引量:94
标识
DOI:10.1097/ju.0000000000000272
摘要

We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score.We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater.A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84).Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
饲养员发布了新的文献求助10
刚刚
1秒前
1秒前
水水应助天蓝日月潭采纳,获得20
1秒前
今后应助Wangjj采纳,获得30
1秒前
luo完成签到,获得积分10
2秒前
莫咏怡发布了新的文献求助10
3秒前
乐乐应助Corn_Dog采纳,获得10
3秒前
鱼鱼鱼发布了新的文献求助10
3秒前
隐形曼青应助网上飞采纳,获得10
3秒前
3秒前
科研通AI6应助kjwu采纳,获得10
3秒前
GLZ6984发布了新的文献求助10
4秒前
sda发布了新的文献求助10
5秒前
laryc完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Ksharp10完成签到,获得积分10
6秒前
大野发布了新的文献求助10
7秒前
7秒前
7秒前
sda完成签到,获得积分10
7秒前
明理如凡完成签到,获得积分10
8秒前
科研通AI6应助Double采纳,获得10
9秒前
pokexuejiao完成签到,获得积分10
9秒前
李雅欣发布了新的文献求助10
9秒前
完美世界应助分隔符采纳,获得10
9秒前
Fernweh完成签到,获得积分20
10秒前
shouying发布了新的文献求助10
10秒前
夜染完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
huangxiaomei111完成签到,获得积分10
11秒前
11秒前
小落完成签到,获得积分10
12秒前
我是弱智先帮我完成签到,获得积分10
12秒前
李爱国应助叶祥采纳,获得10
12秒前
gyh完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728