Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data

支持向量机 偏最小二乘回归 数学 校准 饲料 天蓬 豆类 干物质 均方误差 统计 人工智能 农学 植物 生物 计算机科学
作者
Zhenjiang Zhou,J. Morel,David Parsons,Sergey Kucheryavskiy,Anne‐Maj Gustavsson
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:162: 246-253 被引量:46
标识
DOI:10.1016/j.compag.2019.03.038
摘要

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
haishixigua完成签到,获得积分10
刚刚
刚刚
刚刚
L_完成签到,获得积分10
1秒前
公司账号2发布了新的文献求助10
1秒前
luming完成签到,获得积分10
2秒前
3秒前
坚定的跳跳糖完成签到 ,获得积分10
4秒前
CLMY完成签到,获得积分10
4秒前
5秒前
咸鱼发布了新的文献求助10
5秒前
5秒前
甜甜亦丝发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助50
6秒前
7秒前
chenfeng发布了新的文献求助30
7秒前
parrowxg完成签到,获得积分10
8秒前
9秒前
orixero应助夏xx采纳,获得10
9秒前
盼盼527完成签到,获得积分10
10秒前
nissy完成签到,获得积分10
11秒前
11发布了新的文献求助10
12秒前
刺五加发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
OOYWZEHNN发布了新的文献求助10
14秒前
bq完成签到,获得积分10
15秒前
AJoe发布了新的文献求助50
17秒前
库库写论文完成签到,获得积分10
18秒前
空写乐发布了新的文献求助30
19秒前
双生客完成签到,获得积分10
20秒前
OOYWZEHNN完成签到,获得积分10
21秒前
23秒前
量子星尘发布了新的文献求助50
24秒前
25秒前
领导范儿应助AJoe采纳,获得10
26秒前
nissy发布了新的文献求助20
26秒前
科研通AI6应助幽默的宛白采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920461
求助须知:如何正确求助?哪些是违规求助? 4192039
关于积分的说明 13020047
捐赠科研通 3962876
什么是DOI,文献DOI怎么找? 2172323
邀请新用户注册赠送积分活动 1190156
关于科研通互助平台的介绍 1098997