Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data

支持向量机 偏最小二乘回归 数学 校准 饲料 天蓬 豆类 干物质 均方误差 统计 人工智能 农学 植物 生物 计算机科学
作者
Zhenjiang Zhou,J. Morel,David Parsons,Sergey Kucheryavskiy,Anne‐Maj Gustavsson
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:162: 246-253 被引量:46
标识
DOI:10.1016/j.compag.2019.03.038
摘要

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
eternal完成签到,获得积分10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
刚刚
6666应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
6666应助科研通管家采纳,获得10
1秒前
1秒前
Momomo应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
6666应助科研通管家采纳,获得10
1秒前
Momomo应助科研通管家采纳,获得10
1秒前
1秒前
6666应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
一半发布了新的文献求助10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
wty应助科研通管家采纳,获得10
1秒前
Momomo应助科研通管家采纳,获得10
1秒前
1秒前
学生守则发布了新的文献求助10
1秒前
1秒前
好好发布了新的文献求助10
2秒前
故意的秋烟完成签到,获得积分10
2秒前
骆十八完成签到,获得积分10
3秒前
yl发布了新的文献求助10
3秒前
啦啦啦啦啦啦啦完成签到,获得积分10
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752748
求助须知:如何正确求助?哪些是违规求助? 5476488
关于积分的说明 15374929
捐赠科研通 4891676
什么是DOI,文献DOI怎么找? 2630633
邀请新用户注册赠送积分活动 1578796
关于科研通互助平台的介绍 1534686