Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data

支持向量机 偏最小二乘回归 数学 校准 饲料 天蓬 豆类 干物质 均方误差 统计 人工智能 农学 植物 生物 计算机科学
作者
Zhenjiang Zhou,J. Morel,David Parsons,Sergey Kucheryavskiy,Anne‐Maj Gustavsson
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:162: 246-253 被引量:46
标识
DOI:10.1016/j.compag.2019.03.038
摘要

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ran完成签到 ,获得积分10
刚刚
cong完成签到,获得积分10
刚刚
充电宝应助Tigher采纳,获得10
刚刚
Jaslin完成签到,获得积分10
1秒前
彳亍完成签到,获得积分10
1秒前
学习猴完成签到,获得积分10
1秒前
搜集达人应助疯子魔煞采纳,获得10
2秒前
2323完成签到,获得积分10
3秒前
3秒前
3秒前
oblivious完成签到,获得积分10
3秒前
凶狠的惜海完成签到,获得积分20
3秒前
3秒前
vivian完成签到 ,获得积分10
3秒前
4秒前
大肥子完成签到,获得积分10
4秒前
倾城完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
Leorihy19完成签到,获得积分10
4秒前
4秒前
4秒前
烟花应助童谣采纳,获得10
5秒前
life的半边天完成签到 ,获得积分10
6秒前
不必要再讨论适合与否完成签到,获得积分10
6秒前
款冬完成签到,获得积分10
6秒前
shirely发布了新的文献求助10
6秒前
内向的跳跳糖完成签到,获得积分10
7秒前
yoyo完成签到,获得积分20
7秒前
jun发布了新的文献求助20
8秒前
xu完成签到,获得积分10
8秒前
廖无极发布了新的文献求助10
9秒前
幽默发卡发布了新的文献求助10
9秒前
Sun发布了新的文献求助10
10秒前
DIY101发布了新的文献求助10
10秒前
10秒前
汉堡包应助meatball1982采纳,获得10
11秒前
11秒前
孤独梦曼完成签到,获得积分10
11秒前
我行我素完成签到,获得积分10
11秒前
xiongqi完成签到 ,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044