Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data

支持向量机 偏最小二乘回归 数学 校准 饲料 天蓬 豆类 干物质 均方误差 统计 人工智能 农学 植物 生物 计算机科学
作者
Zhenjiang Zhou,J. Morel,David Parsons,Sergey Kucheryavskiy,Anne‐Maj Gustavsson
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:162: 246-253 被引量:46
标识
DOI:10.1016/j.compag.2019.03.038
摘要

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
慕青应助毛豆采纳,获得10
1秒前
2秒前
2秒前
LU41完成签到,获得积分10
2秒前
2秒前
Akim应助chenxt采纳,获得10
2秒前
2秒前
慕青应助wsfwsf01采纳,获得10
3秒前
完美世界应助Peter采纳,获得10
3秒前
李正纲发布了新的文献求助10
4秒前
4秒前
陈梦完成签到,获得积分10
4秒前
大钱哥完成签到,获得积分10
4秒前
酷波er应助雯雯雯雯采纳,获得10
5秒前
呼呼哈哈完成签到,获得积分10
5秒前
苗轩发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
洛洛完成签到,获得积分20
6秒前
kabayi完成签到,获得积分10
6秒前
我想睡觉发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
落落完成签到,获得积分10
8秒前
tutututu发布了新的文献求助30
8秒前
琳琳发布了新的文献求助10
8秒前
星辰大海应助落寞白曼采纳,获得10
9秒前
9秒前
平凡完成签到,获得积分10
9秒前
金水完成签到,获得积分10
10秒前
10秒前
科研通AI6应助wzh采纳,获得10
10秒前
10秒前
烟花应助弗洛伊德的梦采纳,获得10
10秒前
CDKSEVEN完成签到,获得积分20
10秒前
freeQQ完成签到,获得积分10
10秒前
虚心的小兔子应助memory采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433983
求助须知:如何正确求助?哪些是违规求助? 4546344
关于积分的说明 14201919
捐赠科研通 4466282
什么是DOI,文献DOI怎么找? 2447905
邀请新用户注册赠送积分活动 1438954
关于科研通互助平台的介绍 1415876