Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data

支持向量机 偏最小二乘回归 数学 校准 饲料 天蓬 豆类 干物质 均方误差 统计 人工智能 农学 植物 生物 计算机科学
作者
Zhenjiang Zhou,J. Morel,David Parsons,Sergey Kucheryavskiy,Anne‐Maj Gustavsson
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:162: 246-253 被引量:46
标识
DOI:10.1016/j.compag.2019.03.038
摘要

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein concentration (CP) of forage crops both during typical harvest times and at a very early developmental stage. Canopy spectral reflectance of legume and grass mixtures was measured in Sweden using a commercialized radiometer (400–1000 nm range). In total, 377 plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 2 clover species) across two years, two locations and five N rates. Two mathematical methods, namely partial least squares (PLS) and support vector machine (SVM) were used to build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the total 377 samples, 251 were randomly selected and used for calibration, and the remaining 126 samples were used as an independent dataset for validation. Results showed that the performance of SVM was better than PLS (based on mean absolute error (MAE) for both calibration and validation datasets) for the estimation of all investigated variables. Results for the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8%, respectively. In addition, a subsample, which corresponded to an early developmental stage, was analysed separately with PLS and SVM as for the whole dataset. Results showed that SVM was better than PLS for the estimation of all investigated variables. The high performance of SVM to estimate legume and grass mixture N uptake and dry matter yield could provide support for varying management decisions including fertilization and timing of harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TvT发布了新的文献求助10
1秒前
独特鸽子发布了新的文献求助10
1秒前
chuzihang完成签到 ,获得积分10
1秒前
NexusExplorer应助舒服的觅夏采纳,获得10
2秒前
友好的缘分完成签到,获得积分10
3秒前
慕青应助小申采纳,获得10
4秒前
赛因斯完成签到,获得积分10
4秒前
5秒前
Loik发布了新的文献求助10
6秒前
科研通AI2S应助独特鸽子采纳,获得10
9秒前
10秒前
xiao发布了新的文献求助100
10秒前
Owen应助zyy采纳,获得10
11秒前
11秒前
荷月初六完成签到,获得积分10
12秒前
荷月初六发布了新的文献求助20
15秒前
六月初八夜完成签到,获得积分10
16秒前
ll发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
劳恩特应助非而者厚采纳,获得30
17秒前
Li发布了新的文献求助10
17秒前
雪落完成签到,获得积分10
17秒前
18秒前
18秒前
23秒前
23秒前
25秒前
Li完成签到,获得积分10
26秒前
华仔应助悠悠采纳,获得10
26秒前
www完成签到,获得积分10
26秒前
yuzhuoWng发布了新的文献求助10
27秒前
nylon发布了新的文献求助10
27秒前
27秒前
san完成签到,获得积分10
29秒前
30秒前
30秒前
欢呼的初彤完成签到 ,获得积分10
31秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587