Deep Learning of Complex Batch Process Data and Its Application on Quality Prediction

计算机科学 人工智能 编码器 机器学习 特征(语言学) 面子(社会学概念) 深度学习 过程(计算) 数据挖掘 质量(理念) 社会科学 语言学 认识论 操作系统 哲学 社会学
作者
Kai Wang,R. Bhushan Gopaluni,Junghui Chen,Zhihuan Song
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (12): 7233-7242 被引量:72
标识
DOI:10.1109/tii.2018.2880968
摘要

Batch process quality prediction is an important application in manufacturing and chemical industries. The complexity of batch processes is characterized by multiphase, nonlinearity, dynamics, and uneven durations so that modeling of these batch processes is rather difficult. Moreover, there are other challenges in the face of quality prediction. Specifically, the process trajectories over the whole running duration potentially make specific contributions to the final targets so that the prediction issue embraces tremendously high-dimensional inputs but very low-dimensional outputs. This means that the prediction suffers from a severe dimensional imbalance between inputs and outputs. Motivated by these difficulties, this paper proposes a new deep learning-based framework for complex feature representative and quality prediction. Long short-term memory (LSTM) is used to extract comprehensive quality-relevant hidden features from a long-time sequence in each phase, significantly reducing the predictor dimensions. And these features from different phases are further integrated and compressed by a stacked auto-encoder (SAE). A practical industrial example testifies to the efficacy of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
义气绿柳发布了新的文献求助10
1秒前
1秒前
77发布了新的文献求助10
2秒前
江竹兰完成签到,获得积分10
2秒前
多喝水我完成签到 ,获得积分10
3秒前
明天见发布了新的文献求助10
4秒前
happy完成签到,获得积分10
5秒前
6秒前
大个应助嘿嘿嘿采纳,获得10
7秒前
HRB完成签到 ,获得积分10
8秒前
英俊的铭应助CHAIZH采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
欧阳振应助科研通管家采纳,获得10
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
wy.he应助科研通管家采纳,获得20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
百事可乐应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
yookia应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
dypdyp应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
小郭应助科研通管家采纳,获得20
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
欧阳振应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
ganjqly应助科研通管家采纳,获得10
12秒前
12秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421