National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging.

空气质量指数 反距离权重法 卫星 回归分析 线性回归 空间分析 空间分布 污染 均方误差 估计 遥感 大气科学 空间变异性 排放清单 自然地理学
作者
Hao Xu,Matthew J. Bechle,Meng Wang,Adam A. Szpiro,Sverre Vedal,Yuqi Bai,Julian D. Marshall
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:655: 423-433 被引量:55
标识
DOI:10.1016/j.scitotenv.2018.11.125
摘要

Abstract Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in China. China is the most populous country in the world and also has the largest number of air pollution deaths per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively low. We address this knowledge gap by developing and evaluating national empirical models for China incorporating land-use regression (LUR), satellite measurements, and universal kriging (UK). Land use, traffic and meteorological variables were included for model building. We tested the resulting models in several ways, including (1) comparing models developed using forward variable selection vs. partial least squares (PLS) variable reduction, (2) comparing models developed with and without satellite measurements, and with and without UK, and (3) 10-fold cross-validation (CV), Leave-One-Province-Out CV (LOPO-CV), and Leave-One-City-Out CV (LOCO-CV). Satellite data and kriging are complementary in making predictions more accurate: kriging improved the models in well-sampled areas; satellite data substantially improved performance at locations far away from monitors. Variable-selection models performed similarly to PLS models in 10-fold CV, but better in LOPO-CV. Our best models employed forward variable selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and 2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations during 2014–2015 decreased for PM2.5 (58.7 μg/m3 to 52.3 μg/m3) and NO2 (29.6 μg/m3 to 26.8 μg/m3). We produced the first high resolution national LUR models for annual-average concentrations in China. Models were applied on 1 km grid to support future research. In 2015, >80% of the Chinese population lived in areas that exceeded the Chinese national PM2.5 standard, 35 μg/m3. Results here will be publicly available and may be useful for epidemiology, risk assessment, and environmental justice research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
迅速的晟睿完成签到,获得积分10
2秒前
万能图书馆应助稳重向南采纳,获得10
4秒前
5秒前
5秒前
123完成签到,获得积分10
6秒前
lxdfrank发布了新的文献求助50
6秒前
库库完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
小蘑菇应助zhanks采纳,获得10
9秒前
乐乐应助稳重向南采纳,获得10
11秒前
叙温雨发布了新的文献求助10
11秒前
11秒前
JinwenShi发布了新的文献求助10
12秒前
trussie完成签到,获得积分10
12秒前
13秒前
15秒前
结实灭男发布了新的文献求助10
15秒前
萧水白应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
咖啡豆应助科研通管家采纳,获得20
19秒前
19秒前
思源应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
飞凡发布了新的文献求助10
20秒前
xrkxrk完成签到 ,获得积分10
21秒前
小绵羊完成签到 ,获得积分10
22秒前
俊哥发布了新的文献求助10
23秒前
尼姑拉斯娃完成签到,获得积分20
23秒前
23秒前
24秒前
科研通AI2S应助无限猫咪采纳,获得10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706