National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging.

空气质量指数 反距离权重法 卫星 回归分析 线性回归 空间分析 空间分布 污染 均方误差 估计 遥感 大气科学 空间变异性 排放清单 自然地理学
作者
Hao Xu,Matthew J. Bechle,Meng Wang,Adam A. Szpiro,Sverre Vedal,Yuqi Bai,Julian D. Marshall
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:655: 423-433 被引量:55
标识
DOI:10.1016/j.scitotenv.2018.11.125
摘要

Abstract Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in China. China is the most populous country in the world and also has the largest number of air pollution deaths per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively low. We address this knowledge gap by developing and evaluating national empirical models for China incorporating land-use regression (LUR), satellite measurements, and universal kriging (UK). Land use, traffic and meteorological variables were included for model building. We tested the resulting models in several ways, including (1) comparing models developed using forward variable selection vs. partial least squares (PLS) variable reduction, (2) comparing models developed with and without satellite measurements, and with and without UK, and (3) 10-fold cross-validation (CV), Leave-One-Province-Out CV (LOPO-CV), and Leave-One-City-Out CV (LOCO-CV). Satellite data and kriging are complementary in making predictions more accurate: kriging improved the models in well-sampled areas; satellite data substantially improved performance at locations far away from monitors. Variable-selection models performed similarly to PLS models in 10-fold CV, but better in LOPO-CV. Our best models employed forward variable selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and 2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations during 2014–2015 decreased for PM2.5 (58.7 μg/m3 to 52.3 μg/m3) and NO2 (29.6 μg/m3 to 26.8 μg/m3). We produced the first high resolution national LUR models for annual-average concentrations in China. Models were applied on 1 km grid to support future research. In 2015, >80% of the Chinese population lived in areas that exceeded the Chinese national PM2.5 standard, 35 μg/m3. Results here will be publicly available and may be useful for epidemiology, risk assessment, and environmental justice research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
狗德拜发布了新的文献求助20
刚刚
李健的小迷弟应助hahaha采纳,获得10
1秒前
Shellbeaze完成签到,获得积分10
1秒前
1秒前
杨文志发布了新的文献求助10
1秒前
1秒前
化学y发布了新的文献求助10
2秒前
3秒前
4秒前
dunhuang完成签到,获得积分10
4秒前
香蕉觅云应助调皮的蓝天采纳,获得10
4秒前
huenguyenvan完成签到,获得积分10
4秒前
5秒前
充电宝应助xiaolan采纳,获得10
6秒前
JL完成签到,获得积分10
6秒前
6秒前
6秒前
ChenYX发布了新的文献求助10
6秒前
刘wt发布了新的文献求助10
7秒前
完美世界应助莉123采纳,获得10
7秒前
大饼卷肉发布了新的文献求助10
7秒前
pokikiii完成签到,获得积分10
7秒前
8秒前
8秒前
上官若男应助cc采纳,获得10
8秒前
丁真完成签到,获得积分10
9秒前
今后应助笔墨留香采纳,获得10
9秒前
9秒前
栗子完成签到 ,获得积分10
9秒前
研友_nPoWNL完成签到,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
10秒前
Lucas应助大饼卷肉采纳,获得10
11秒前
完美世界应助wjx采纳,获得10
11秒前
研友_LkYoRZ发布了新的文献求助10
11秒前
Ava应助朽木采纳,获得10
11秒前
科目三应助行走的土豆采纳,获得10
12秒前
又又完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298