National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging

克里金 环境科学 中国 回归 统计 卫星 气象学 回归分析 遥感 地理 数学 物理 天文 考古
作者
Hao Xu,Matthew J. Bechle,Meng Wang,Adam A. Szpiro,Sverre Vedal,Yuqi Bai,Julian Marshall
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:655: 423-433 被引量:141
标识
DOI:10.1016/j.scitotenv.2018.11.125
摘要

Abstract Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in China. China is the most populous country in the world and also has the largest number of air pollution deaths per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively low. We address this knowledge gap by developing and evaluating national empirical models for China incorporating land-use regression (LUR), satellite measurements, and universal kriging (UK). Land use, traffic and meteorological variables were included for model building. We tested the resulting models in several ways, including (1) comparing models developed using forward variable selection vs. partial least squares (PLS) variable reduction, (2) comparing models developed with and without satellite measurements, and with and without UK, and (3) 10-fold cross-validation (CV), Leave-One-Province-Out CV (LOPO-CV), and Leave-One-City-Out CV (LOCO-CV). Satellite data and kriging are complementary in making predictions more accurate: kriging improved the models in well-sampled areas; satellite data substantially improved performance at locations far away from monitors. Variable-selection models performed similarly to PLS models in 10-fold CV, but better in LOPO-CV. Our best models employed forward variable selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and 2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations during 2014–2015 decreased for PM2.5 (58.7 μg/m3 to 52.3 μg/m3) and NO2 (29.6 μg/m3 to 26.8 μg/m3). We produced the first high resolution national LUR models for annual-average concentrations in China. Models were applied on 1 km grid to support future research. In 2015, >80% of the Chinese population lived in areas that exceeded the Chinese national PM2.5 standard, 35 μg/m3. Results here will be publicly available and may be useful for epidemiology, risk assessment, and environmental justice research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
武雨寒发布了新的文献求助10
1秒前
852应助浅夏丶采纳,获得10
2秒前
4秒前
博珺辰发布了新的文献求助10
4秒前
漫漫完成签到 ,获得积分10
4秒前
6秒前
汉堡包应助猫的树采纳,获得10
9秒前
桐桐应助动人的代芹采纳,获得10
10秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
syzh完成签到,获得积分10
14秒前
14秒前
万能图书馆应助XL神放采纳,获得10
14秒前
16秒前
上官若男应助数学情缘采纳,获得50
17秒前
研友_8Qxp7Z完成签到,获得积分10
17秒前
18秒前
莎莎发布了新的文献求助10
19秒前
科研通AI6应助yr采纳,获得10
20秒前
syzh发布了新的文献求助10
21秒前
22秒前
科研通AI6应助zheweiwang采纳,获得10
24秒前
坦率紫菜完成签到,获得积分10
24秒前
doctorduanmu发布了新的文献求助10
25秒前
26秒前
123完成签到,获得积分10
27秒前
洒脱发布了新的文献求助10
31秒前
Damtree发布了新的文献求助10
31秒前
动人的代芹完成签到,获得积分10
32秒前
科研通AI6应助博珺辰采纳,获得10
32秒前
SciGPT应助零距离采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
科研通AI6应助yr采纳,获得30
34秒前
柔弱的芷珍完成签到,获得积分10
35秒前
赘婿应助catear采纳,获得10
35秒前
hbhsjk完成签到,获得积分10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439