National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging.

空气质量指数 反距离权重法 卫星 回归分析 线性回归 空间分析 空间分布 污染 均方误差 估计 遥感 大气科学 空间变异性 排放清单 自然地理学
作者
Hao Xu,Matthew J. Bechle,Meng Wang,Adam A. Szpiro,Sverre Vedal,Yuqi Bai,Julian D. Marshall
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:655: 423-433 被引量:55
标识
DOI:10.1016/j.scitotenv.2018.11.125
摘要

Abstract Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in China. China is the most populous country in the world and also has the largest number of air pollution deaths per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively low. We address this knowledge gap by developing and evaluating national empirical models for China incorporating land-use regression (LUR), satellite measurements, and universal kriging (UK). Land use, traffic and meteorological variables were included for model building. We tested the resulting models in several ways, including (1) comparing models developed using forward variable selection vs. partial least squares (PLS) variable reduction, (2) comparing models developed with and without satellite measurements, and with and without UK, and (3) 10-fold cross-validation (CV), Leave-One-Province-Out CV (LOPO-CV), and Leave-One-City-Out CV (LOCO-CV). Satellite data and kriging are complementary in making predictions more accurate: kriging improved the models in well-sampled areas; satellite data substantially improved performance at locations far away from monitors. Variable-selection models performed similarly to PLS models in 10-fold CV, but better in LOPO-CV. Our best models employed forward variable selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and 2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations during 2014–2015 decreased for PM2.5 (58.7 μg/m3 to 52.3 μg/m3) and NO2 (29.6 μg/m3 to 26.8 μg/m3). We produced the first high resolution national LUR models for annual-average concentrations in China. Models were applied on 1 km grid to support future research. In 2015, >80% of the Chinese population lived in areas that exceeded the Chinese national PM2.5 standard, 35 μg/m3. Results here will be publicly available and may be useful for epidemiology, risk assessment, and environmental justice research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助gdh采纳,获得10
1秒前
1秒前
2秒前
infinity发布了新的文献求助10
2秒前
闪闪飞机完成签到,获得积分10
2秒前
高贵听云完成签到 ,获得积分10
2秒前
namaka发布了新的文献求助10
2秒前
3秒前
ZO发布了新的文献求助10
3秒前
大朋发布了新的文献求助20
3秒前
小蘑菇应助十一采纳,获得10
3秒前
fancy发布了新的文献求助10
4秒前
5秒前
hexy629完成签到,获得积分10
5秒前
5秒前
111发布了新的文献求助10
6秒前
overlood发布了新的文献求助10
6秒前
毛毛完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
司阔林完成签到,获得积分20
8秒前
8秒前
9秒前
SciGPT应助qwq采纳,获得10
9秒前
9秒前
花卷发布了新的文献求助20
9秒前
无花果应助小何同学采纳,获得10
9秒前
spring发布了新的文献求助10
9秒前
10秒前
Summer发布了新的文献求助10
10秒前
Axs完成签到,获得积分10
11秒前
你是谁发布了新的文献求助150
11秒前
CR7应助科研通管家采纳,获得20
11秒前
小青椒应助科研通管家采纳,获得20
11秒前
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
桃掉烦恼完成签到,获得积分10
11秒前
情怀应助羊羊羊采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635