计算机科学
人工智能
计算机视觉
计算机图形学(图像)
语音识别
作者
Junkai Peng,Chuanbo Zheng,Tianyu Cui,Yong Cheng,Lingyu Si
出处
期刊:Computer Science Research Notes
日期:2018-01-01
被引量:27
标识
DOI:10.24132/csrn.2018.2802.3
摘要
Deep neural networks, such as Faster R-CNN, have been widely used in object detection.However, deep neural networks usually require a large-scale dataset to achieve desirable performance.For the specific application, UAV detection, training data is extremely limited in practice.Since annotating plenty of UAV images manually can be very resource intensive and time consuming, instead, we use PBRT to render a large number of photorealistic UAV images of high variation within a reasonable time.Using PBRT ensures the realism of rendered images, which means they are indistinguishable from real photographs to some extent.Trained with our rendered images, the Faster R-CNN has an AP of 80.69% on manually annotated UAV images test set, much higher than the one only trained with COCO 2014 dataset and PASCAL VOC 2012 dataset (43.36%).Moreover, our rendered image dataset contains not only bounding boxes of all UAVs, but also locations of some important parts of UAVs and locations of all pixels covered by UAVs, which can be used for more complicated application, such as mask detection or keypoint detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI